This is a preview of "ANSI/ISA 99.00.01-20...". Click here to purchase the full version from the ANSI store.

AMERICAN NATIONAL STANDARD

ANSI/ISA-99.00.01-2007

Security for Industrial Automation and Control Systems Part 1: Terminology, Concepts, and Models

Approved 29 October 2007

This is a preview of "ANSI/ISA 99.00.01-20...". Click here to purchase the full version from the ANSI store.

ANSI/ISA-99.00.01-2007 Security for Industrial Automation and Control Systems Part 1: Terminology, Concepts, and Models

ISBN: 978-1-934394-37-3

Copyright © 2007 by ISA. All rights reserved. Not for resale. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic mechanical, photocopying, recording, or otherwise), without the prior written permission of the Publisher.

ISA 67 Alexander Drive P. O. Box 12277 Research Triangle Park, NC 27709 USA

ANSI/ISA-99.00.01-2007

Preface

This preface, as well as all footnotes and annexes, is included for information purposes and is not part of ANSI/ISA-99.00.01-2007.

This document has been prepared as part of the service of ISA, toward a goal of uniformity in the field of instrumentation. To be of real value, this document should not be static but should be subject to periodic review. Toward this end, the Society welcomes all comments and criticisms and asks that they be addressed to the Secretary, Standards and Practices Board; ISA; 67 Alexander Drive; P. O. Box 12277; Research Triangle Park, NC 27709; Telephone (919) 549-8411; Fax (919) 549-8288; E-mail: standards@isa.org.

It is the policy of ISA to encourage and welcome the participation of all concerned individuals and interests in the development of ISA standards, recommended practices, and technical reports. Participation in the ISA standards-making process by an individual in no way constitutes endorsement by the employer of that individual, of ISA, or of any of the standards, recommended practices, and technical reports that ISA develops.

CAUTION – ISA adheres to the policy of the American National Standards Institute with regard to patents. If ISA is informed of an existing patent that is required for use of the standard, it will require the owner of the patent to either grant a royalty-free license for use of the patent by users complying with the standard or a license on reasonable terms and conditions that are free from unfair discrimination.

Even if ISA is unaware of any patent covering this standard, the user is cautioned that implementation of the standard may require use of techniques, processes, or materials covered by patent rights. ISA takes no position on the existence or validity of any patent rights that may be involved in implementing the standard. ISA is not responsible for identifying all patents that may require a license before implementation of the standard or for investigating the validity or scope of any patents brought to its attention. The user should carefully investigate relevant patents before using the standard for the user's intended application.

However, ISA asks that anyone reviewing this standard who is aware of any patents that may impact implementation of the standard notify the ISA Standards and Practices Department of the patent and its owner.

Additionally, the use of this standard may involve hazardous materials, operations or equipment. The standard cannot anticipate all possible applications or address all possible safety issues associated with use in hazardous conditions.

The user of this standard must exercise sound professional judgment concerning its use and applicability under the user's particular circumstances. The user must also consider the applicability of any governmental regulatory limitations and established safety and health practices before implementing this standard.

ANSI/ISA-99.00.01-2007

The following participated as voting members of ISA99 in the development of this standard:

NAME COMPANY

B. Singer, Chair

R. Webb, Managing Director E. Cosman, Lead Editor

R. Bhojani

M. Braendle D. Brandl

E. Byres

R. Clark

A. Cobbett

J. Dalzon

T. Davis

R. Derynck

R. Evans

R. Forrest

J. Gilsinn

T. Glenn

T. Good

E. Hand M. Heard

D. Holstein

C. Hoover

B. Huba

M. Lees

C. Mastromonico

D. Mills

G. Morningstar

A. Nangia

J. Nye

T. Phinney

E. RakaczkyC. Sossman

L. Steinocher

I. Susanto

i. Susanii

B. Taylor

D. Teumim

D. Tindill

L. Uden

J. Weiss

M. Widmeyer L. Winkel Fluid IQs

Consultant

The Dow Chemical Co.

Bayer Technology Services

ABB

BR&L Consulting, Inc.

Byres Security, Inc.

Invensys Systems, Inc. / Wonderware

BP Process Control Digital Protection

ISA France

Citect

Verano, Inc.

Idaho National Laboratory

The Ohio State University

NIST/MEL

Yokogawa

E I DuPont De Nemours & Co.

Sara Lee Food & Beverage

Eastman Chemical Co.

OPUS Publishing

Rockwell Automation

Emerson Processing Management

Schering-Plough Corp.

Westinghouse Savannah River Co.

Procter & Gamble Co.

Cedar Rapids Water Dept.

3IVI

ExxonMobil Research and Engineering

Honeywell ACS Adv Tech Lab Invensys Systems Canada Inc.

WGI-W Safety Management Solutions LLC

Fluor Enterprises, Inc.

Chevron Information Technology Co.

The George Washington University

Teumim Technical LLC

Matrikon Inc.

Lyondell Chemical Co.

Applied Control Solutions, LLC

Consultant

Siemens SG

The following served as active members of ISA99 Working Group 3 in the preparation of this standard:

Name	Company	Contributor	Reviewer
E. Cosman, Lead Editor	The Dow Chemical Co.	$\sqrt{}$	
J. Bauhs	Cargill	√	
R. Bhojani	Bayer	$\sqrt{}$	
M. Braendle	ABB		\checkmark
D. Brandl	BR&L Consulting, Inc.		√

M. Bush	Rockwell Automation	\checkmark	
E. Byres	Byres Security, Inc.		$\sqrt{}$
A. Capel	Comgate Engineering Ltd.		V
L. Capuder	Aramco		V
R. Clark	Invensys Wonderware		V
A. Cobbett	BP		V
J. Dalzon	ISA France		V
H. Daniel	Consultant	V	
A. Daraiseh	Saudi Aramco		V
R. Derynck	Verano, Inc.	$\sqrt{}$	
G. Dimowo	Shell		V
D. Elley	Aspen Technology, Inc.	V	
R. Evans	Idaho National Laboratories		V
J. Gilsinn	NIST/MEL		V
T. Glenn	Yokogawa		V
T. Good	DuPont	$\sqrt{}$	
R. Greenthaler	TXU Energy		V
E. Hand	Sara Lee Food & Beverage	V	
D. Holstein	OPUS Publishing	√	
C. Hoover	Rockwell Automation	√	
M. Jansons	Siemens	√	
R. Lara	Invensys		V
J. Lellis	Aspen Technology, Inc.		V
D. Mills	Procter & Gamble Co.		V
C. Muehrcke	Cyber Defense Agency		V
M. Naedele	ABB		V
J. Nye	ExxonMobil	√	
R. Oyen	Consultant	√	V
D. Peterson	Digital Bond		V
T. Phinney	Honeywell		V
J. Potter	Emerson		V
E. Rakaczky	Invensys		V
J. Seest	Novo Nordisk A/S	√	
B. Singer, ISA99 Chair	Fluid IQs	√	
L. Steinocher	Fluor Enterprises, Inc.		V
I. Susanto	Chevron		V
E. Tieghi	ServiTecno SRL		V
R. Webb	Consultant		V

ANSI/ISA-99.00.01-2007

-6-

J. Weiss	Applied Control Solutions LLC	√
L. Winkel	Siemens SG	V

The ISA Standards and Practices Board approved the first edition of this technical report for publication on 27 September 2007:

NAME	COMPANY
------	---------

T. McAvinew, Chair

M. Coppler

E. Cosman

B. Dumortier

D. Dunn

J. Gilsinn

W. Holland

E. Icayan J. Jamison

K. Lindner

V. Maggioli

A. McCauley, Jr.

G. McFarland

R. Reimer

N. Sands

H. Sasajima

T. Schnaare

J. Tatera

I. Verhappen

R. Webb

W. Weidman

M. Zielinski

J. Weiss M. Widmeyer Jacobs Engineering Group

Ametek, Inc.

The Dow Chemical Co.

Schneider Electric

Aramco Services Co.

NIST/MEL

Consultant

ACES, Inc.

Consultant

Endress & Hauser Process Solutions AG

Feltronics Corp.

Chagrin Valley Controls, Inc.

Emerson Process Management

Rockwell Automation

E I du Pont

Yamatake Corp.

Rosemount, Inc.

Consultant

MTL Instrument Group

Consultant

Parsons Energy & Chemicals Group

Applied Control Solutions LLC

Consultant

Emerson Process Management

-7-

ANSI/ISA-99.00.01-2007

This page intentionally left blank

Table of Contents

Forev	word	12
Introd	duction	14
1 S	cope	15
2 N	lormative References	18
3 D	Definitions	19
3.1	Introduction	
3.2	Terms	19
3.3	Abbreviations	32
4 TI	he Situation	33
4.1	General	33
4.2	Current Systems	33
4.3	Current Trends	34
4.4	Potential Impact	35
5 C	Concepts	36
5.1	General	36
5.2	Security Objectives	36
5.3	Defense in Depth	37
5.4	Security Context	37
5.5	Threat-Risk Assessment	39
5.6	Security Program Maturity	46
5.7	Policies	52
5.8	Security Zones	57
5.9	Conduits	58
5.10	Security Levels	60
5.11	Security Level Lifecycle	64
6 M	lodels	69
6.1	General	69
6.2	Reference Models	60

This is a preview of "ANSI/ISA 99.00.01-20". Click here to p	purchase the full version from the ANSI store
--	---

-9-

ANSI/ISA-99.00.01-2007

6.3	Asset Models	.73
6.4	Reference Architecture	.78
6.5	Zone and Conduit Model	.78
6.6	Model Relationships	.89

Figures

Figure 1 – Comparison of Objectives	36
Figure 2 – Context Element Relationships	38
Figure 3 – Context Model	38
Figure 4 – Integration of Business and IACS Cyber Security	47
Figure 5 – Cyber Security Level over Time	48
Figure 6 – Integration of Resources to Develop the CSMS	49
Figure 7 – Conduit Example	59
Figure 8 – Security Level Lifecycle	65
Figure 9 – Security Level Lifecycle – Assess Phase	66
Figure 10 – Security Level Lifecycle – Implement Phase	67
Figure 11 – Security Level Lifecycle – Maintain Phase	68
Figure 12 – Reference Model for ISA99 Standards	70
Figure 13 – SCADA Reference Model	70
Figure 14 – Process Manufacturing Asset Model Example	74
Figure 15 – SCADA System Asset Model Example	75
Figure 16 – Reference Architecture Example	78
Figure 17 – Multiplant Zone Example	80
Figure 18 – Separate Zones Example	81
Figure 19 – SCADA Zone Example	82
Figure 20 – SCADA Separate Zones Example	83
Figure 21 – Enterprise Conduit	86
Figure 22 – SCADA Conduit Example	87
Figure 23 – Model Relationships	89

– 11 –

ANSI/ISA-99.00.01-2007

Tables

Table 1 – Types of Loss by Asset Type	41
Table 2 – Security Maturity Phases	49
Table 3 – Concept Phase	50
Table 4 – Functional Analysis Phase	50
Table 5 – Implementation Phase	51
Table 6 – Operations Phase	51
Table 7 – Recycle and Disposal Phase	52
Table 8 – Security Levels	60

Foreword

This is the first in a series of ISA standards that addresses the subject of security for industrial automation and control systems. The focus is on the electronic security of these systems, commonly referred to as cyber security. This Part 1 standard describes the basic concepts and models related to cyber security.

This standard is structured to follow ISO/IEC directives part 2 for standards development as closely as possible. An introduction before the first numbered clause describes the range of coverage of the entire series of standards. It defines industrial automation and control systems and provides various criteria to determine whether a particular item is included within the scope of the standards.

Clause 1 defines the scope of this standard.

Clause 2 lists normative references that are indispensable for the application of this document.

Clause 3 is a list of terms and definitions used in this standard. Most are drawn from established references, but some are derived for the purpose of this standard.

Clause 4 provides an overview of the current situation with respect to the security of industrial automation and control systems, including trends and their potential impact.

Clause 5 contains a broad description of the subject and the basic concepts that establish the scope of industrial automation and control systems security. Many of these concepts are well established within the security discipline, but their applicability to industrial control systems may not have been clearly described. In some cases the nature of industrial control systems leads to an interpretation that may be different from that used for more general information technology applications.

Clause 6 describes a series of models that are used to apply the basic concepts of security for industrial automation and control systems. As with the concepts, several models are based on more generic views, with some aspects adjusted to address specific aspects of industrial control system applications.

The ISA99 Series

Standards in the ISA99 series address the application of these concepts and models in areas such as security program definition and minimum security requirements. The series includes the following standards.

1. ISA99.00.01 - Part 1: Terminology, Concepts and Models

Part 1 (this standard) establishes the context for all of the remaining standards in the series by defining a common set of terminology, concepts and models for electronic security in the industrial automation and control systems environment.

2. ISA99.00.02 – Part 2: Establishing an Industrial Automation and Control System Security Program

Part 2 will describe the elements of a cyber security management system and provide guidance for their application to industrial automation and control systems.

3. ISA99.00.03 – Part 3: Operating an Industrial Automation and Control System Security Program

Part 3 will address how to operate a security program after it is designed and implemented. This includes definition and application of metrics to measure program effectiveness.

4. ISA99.00.04 – Part 4: Technical Security Requirements for Industrial Automation and Control Systems

Part 4 will define the characteristics of industrial automation and control systems that differentiate them from other information technology systems from a security point of view. Based on these characteristics, the standard will establish the security requirements that are unique to this class of systems.

The relationship between the standards in this series is shown in the following diagram:

ISA99.00.01– Part 1: Terminology, Concepts and Models

ISA99.00.02 – Part 2: Establishing an Industrial Automation and Control System Security Program

ISA99.00.03 – Part 3: Operating an Industrial Automation and Control System Security Program

ISA99.00.04 – Part 4: Technical Security Requirements for Industrial Automation and Control Systems

Relationships of the ISA99 Standards

In addition, the ISA99 committee has produced two technical reports on the subject of electronic security within the industrial automation and control systems environment.

1. ANSI/ISA-TR99.00.01-2007 - Technologies for Protecting Manufacturing and Control Systems

Technical Report 1, updated from the original 2004 version, describes various security technologies in terms of their applicability for use with industrial automation and control systems. This technical report will be updated periodically to reflect changes in technology.

2. ANSI/ISA-TR99.00.02-2004 – Integrating Electronic Security into the Manufacturing and Control Systems Environment

Technical Report 2 describes how electronic security can be integrated into industrial automation and control systems. The contents of this technical report will be superseded with the completion of the Part 2 standard.

Introduction

The subject of this standard is *security for industrial automation and control systems*. In order to address a range of applications (i.e., industry types), each of the terms in this description have been interpreted very broadly.

The term *industrial automation and control systems (IACS)* includes control systems used in manufacturing and processing plants and facilities, building environmental control systems, geographically dispersed operations such as utilities (i.e., electricity, gas, and water), pipelines and petroleum production and distribution facilities, and other industries and applications such as transportation networks, that use automated or remotely controlled or monitored assets.

The term security is considered here to mean the prevention of illegal or unwanted penetration, intentional or unintentional interference with the proper and intended operation, or inappropriate access to confidential information in industrial automation and control systems. *Electronic security,* the particular focus of this standard, includes computers, networks, operating systems, applications and other programmable configurable components of the system.

The audience for this standard includes all users of industrial automation and control systems (including facility operations, maintenance, engineering, and corporate components of user organizations), manufacturers, suppliers, government organizations involved with, or affected by, control system cyber security, control system practitioners, and security practitioners. Because mutual understanding and cooperation between information technology (IT) and operations, engineering, and manufacturing organizations is important for the overall success of any security initiative, this standard is also a reference for those responsible for the integration of industrial automation and control systems and enterprise networks.

Typical questions addressed by this Part 1 standard include:

- a) What is the general scope of application for "industrial automation and control systems security"?
- b) How can the needs and requirements of a security system be defined using consistent terminology?
- c) What are the basic concepts that form the foundation for further analysis of the activities, system attributes, and actions that are important to provide electronically secure control systems?
- d) How can the components of an industrial automation and control system be grouped or classified for the purpose of defining and managing security?
- e) What are the different electronic security objectives for control system applications?
- f) How can these objectives be established and codified?

Each of these questions is addressed in detail in subsequent clauses of this standard.

1 Scope

This standard defines the terminology, concepts and models for industrial automation and control systems (IACS) security. It establishes the basis for the remaining standards in the ISA99 series.

To fully articulate the systems and components the ISA99 standards address, the range of coverage may be defined and understood from several perspectives, including:

- a) range of functionality included
- b) specific systems and interfaces
- c) criteria for selecting included activities
- d) criteria for selecting included assets

Each of these is described in the following paragraphs.

Functionality Included

The scope of this standard can be described in terms of the range of functionality within an organization's information and automation systems. This functionality is typically described in terms of one or more models.

This standard is focused primarily on industrial automation and control, as described in a reference model (see clause 6). Business planning and logistics systems are not explicitly addressed within the scope of this standard, although the integrity of data exchanged between business and industrial systems is considered.

Industrial automation and control includes the supervisory control components typically found in process industries. It also includes SCADA (supervisory control and data acquisition) systems that are commonly used by organizations that operate in critical infrastructure industries. These include:

- a) electricity transmission and distribution
- b) gas and water distribution networks
- c) oil and gas production operations
- d) gas and liquid transmission pipelines

This is not an exclusive list. SCADA systems may also be found in other critical and non-critical infrastructure industries.