American National Standard for Occupational and Educational Personal Eye and Face Protection Devices
American National Standard
Occupational and Educational
Personal Eye and Face
Protection Devices

Secretariat
International Safety Equipment Association

Approved March 11, 2020
American National Standards Institute, Inc.
An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether they have approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no persons shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Foreword (This Foreword is not a part of ANSI/ISEA Z87.1-2020)

ANSI/ISEA Z87.1-2020 represents the sixth revision of the voluntary industry consensus standard for eye and face protection, which is also codified in regulatory text by the U.S. Occupational Safety and Health Administration obliging employers to provide employees with appropriate safety eyewear and face protection that conforms to the industry standard.

The document continues to focus on product performance and harmonization with global standards in an effort to allow new and innovative designs responsive to workplace hazards and end-user needs. To this end, this current version includes criteria and requisite markings for protectors offering relaxed optics, as an option to the long-standing requirements. This in response to the recognition that certain job tasks and applications, such as those performed by first-responder, firefighting or military personnel, may not need require the stringent optical criteria historically imposed. It is cautioned that protectors with relaxed optics may not be appropriate for industrial applications such machinery operation, precision work, or in laboratory environments, and as such, a proper hazard assessment should be conducted.

Additionally, the 2020 version includes testing, performance and marking criteria for lenses with anti-fog properties. While this lens-only assessment is a departure from a final configuration approach generally applied throughout the standard, it is recognized that fogging can impede a wearer’s ability to perform work safely. Such requirements are consistent with criteria in similar global standards and have been incorporated for the benefit of the wearer.

Other key updates address the emergence of innovating product designs which past editions did not contemplate. These are seen by changings transmittance allowances and expanded welding filter shades. Additional clarifications have been made throughout to provide consistency in testing execution such as when applying dark-state tolerances for automatic darkening welding filters or determining the minimum coverage area with respect to the specified headform.

Suggestions for improvement of this standard are welcome. They should be sent to the International Safety Equipment Association, isea@safetyequipment.org.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on Safety Standards for Eye Protection, Z87. Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the Z87 Committee had the following members:

J.P Sankpill, Chairman
Jack B. Hirschmann, Jr., Vice-Chairman

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Optometric Association</td>
<td>Aaron Zimmerman, O.D., MS</td>
</tr>
<tr>
<td>American Society of Safety Professionals</td>
<td>Gregory Good, O.D., Ph.D.</td>
</tr>
<tr>
<td>American Welding Society</td>
<td>Jack B. Hirschmann, Jr.</td>
</tr>
<tr>
<td>Essilor USA</td>
<td>David Sliney</td>
</tr>
<tr>
<td>ICS Laboratories, Inc.</td>
<td>J.P. Sankpill</td>
</tr>
<tr>
<td>Individual Member</td>
<td>Emmanuel Alabi, O.D., Ph.D.</td>
</tr>
<tr>
<td>Individual Member</td>
<td>Keith Whitten</td>
</tr>
<tr>
<td>Individual Member</td>
<td>Michael Kertis</td>
</tr>
<tr>
<td>Individual Member</td>
<td>Jack Laptad</td>
</tr>
</tbody>
</table>
International Safety Equipment Association
Jones and Company
Kimberly-Clark Professional
The Laboratory Safety Institute
3M Company
National Association of Optometrists and Opticians
National Institute for Occupational Safety and Health (NIOSH)
Optical Laboratories Association
Opticians Association of America
Power Tools Institute
Safety Equipment Institute
UL LLC
U.S. Department of the Air Force
U.S. Department of the Army
U.S. Department of the Navy
The Vision Council
Walter Surface Technologies
Younger Optics
ANSI Z80 Committee Ophthalmic Lenses
Individual Expert (non-voting)

Jud Crosby
Cristine Z. Fargo, CAE
Bruce Hey
Joann M. Kline, JD
James Kaufmann, Ph.D.
Dr. Rajeev Santhappa
Keith A. Fecteau
Rob Fontaine
Jeremy Swan
James R. Harris, Ph.D.
Jonathan Szalajda
Neil Torgersen
Michael Vitale
Tom Hicks
Al Pierga
Brett Cohen
Anna Seiple
Dean Moran
David Salter
Robin Tutor

LtCol. Luanne Danes
Robert N. Kang
Major Jin B. Ha
LtCol James Truong
LCDR Hong Gao
Dr. Michael Pattison
Michael Vitale
Tom Sadler
Jennifer Panzek
Koby Curtis
Dick Whitney
Neil Torgersen
Dale B. Pfriem
Table of Contents

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
</tr>
<tr>
<td>1 Preface</td>
<td>1</td>
</tr>
<tr>
<td>2 Scope, Purpose, Application, and Interpretations</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>2.3 Application</td>
<td>1</td>
</tr>
<tr>
<td>2.4 Interpretations</td>
<td>2</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Normative References</td>
<td>6</td>
</tr>
<tr>
<td>5 Fundamental Design Requirements for All Protectors</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Optical Requirements</td>
<td>6</td>
</tr>
<tr>
<td>5.2 Physical Requirements</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Markings</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Other Requirements</td>
<td>10</td>
</tr>
<tr>
<td>5.5 Replaceable Lenses</td>
<td>10</td>
</tr>
<tr>
<td>5.6 Aftermarket Components and Accessories</td>
<td>11</td>
</tr>
<tr>
<td>6 Optional Design Characteristics</td>
<td>11</td>
</tr>
<tr>
<td>6.1 Relaxed Optics Level</td>
<td>11</td>
</tr>
<tr>
<td>6.2 Anti-Fog Properties</td>
<td>11</td>
</tr>
<tr>
<td>7 Optional Hazard-Specific Requirements</td>
<td>11</td>
</tr>
<tr>
<td>7.1 Impact-Protector Requirements</td>
<td>11</td>
</tr>
<tr>
<td>7.2 Optical Radiation Protector Requirements</td>
<td>14</td>
</tr>
<tr>
<td>7.3 Droplet and Splash Protector Requirements</td>
<td>18</td>
</tr>
<tr>
<td>7.4 Dust Protector Requirements</td>
<td>18</td>
</tr>
<tr>
<td>7.5 Fine Dust Protector Requirements</td>
<td>18</td>
</tr>
<tr>
<td>8 RESERVED FOR FUTURE USE</td>
<td>19</td>
</tr>
<tr>
<td>9 Test Methods</td>
<td>19</td>
</tr>
<tr>
<td>9.1 Optical Quality Test</td>
<td>19</td>
</tr>
<tr>
<td>9.2 Transmittance Test</td>
<td>19</td>
</tr>
<tr>
<td>9.3 Haze Test</td>
<td>19</td>
</tr>
<tr>
<td>9.4 Refractive Power, Astigmatism and Resolving Power Tests</td>
<td>19</td>
</tr>
<tr>
<td>9.5 Prismatic Power Test</td>
<td>20</td>
</tr>
<tr>
<td>9.6 Drop Ball Test</td>
<td>21</td>
</tr>
<tr>
<td>9.7 Ignition Test</td>
<td>21</td>
</tr>
<tr>
<td>9.8 Corrosion Resistance Test</td>
<td>21</td>
</tr>
<tr>
<td>9.9 Light Tightness Test</td>
<td>22</td>
</tr>
<tr>
<td>9.10 Lateral Protection Test</td>
<td>22</td>
</tr>
</tbody>
</table>
9.11 High Mass Impact Test... 22
9.12 High Velocity Impact Test.. 23
9.13 Penetration Test ... 24
9.14 Prescription Lens Material Qualification Test................................. 25
9.15 Switching Index Test ... 25
9.16 Angular Dependence of Luminous Transmittance Test for Automatic Welding Filter Devices .. 26
9.17 Droplet and Splash Test... 27
9.18 Dust Test ... 28
9.19 Fine Dust Particle Test.. 29
9.20 Anti-Fog Lens Test ... 30

10 Instructions, Use and Maintenance .. 31
10.1 General ... 31
10.2 Instructions ... 31
10.3 Inspections .. 31
10.4 Maintenance and Care ... 31
10.5 Training ... 31

Annexes
Annex A Samples for Testing (normative) .. 32
Annex B Reference Headforms (normative) ... 33
Annex C Spectral Factor Tables (normative) .. 35
Annex D Lateral (Side) Coverage Illustration (Medium Headform) (informative) ... 39
Annex E Test Apparatus (informative) .. 40
Annex F Calibration of Test Telescope (informative) 45
Annex G Illustrations to Aid in Refractive Power, Astigmatism and Resolving Power Testing (informative) 46
Annex H Sources for Test Apparatus (informative) 47
Annex I Resource Publications (informative) .. 48
Annex J Eye and Face Selection Guide (informative) 49
Annex K Hazard Assessment and Protector Selection (informative) 54
Annex L Examples of Protector Markings (informative) 59

Tables
Table 1 Tolerance on Refractive Power, Astigmatism and Resolving Power – Standard Optics .. 7
Table 2 Tolerance on Prism and Prism Imbalance 7
Table 3 Marking Requirements ... 9
Table 4 Minimum Thickness Requirements for Prescription Lenses 10
Table 5 Tolerance on Refractive Power, Astigmatism and Resolving Power - Relaxed Optics .. 12
Table 6 High Velocity Impact Testing .. 13
Table 7 Transmittance Requirements for Welding Filter Lenses 16
Table 8 Transmittance Requirements for Ultraviolet Filter Lenses 16
Table 9 Transmittance Requirements for Infrared Filter Lenses 17
Table 10 Transmittance Requirements for Visible Light Filter Lenses 17
Table 11 Transmittance Requirements for Special Purpose Filter Lenses ... 17
Table 12 Switching Index Requirements for Automatic Darkening Welding Filter Lenses ... 18
Table 13 Angular Dependence of Luminous Transmittance 18
American National Standard for Occupational and Educational Personal Eye and Face Protection Devices

1. Preface

This standard for personal eye and face protectors is, as far as possible, designed to be performance oriented.

Every effort should be made to eliminate eye and face hazards in occupational and educational settings. Protectors do not provide unlimited protection. In the occupational and educational environment, protectors are not substitutes for machine guards and other engineering controls. Protectors alone should not be relied on to provide complete protection against hazards, but should be used in conjunction with machine guards, engineering controls, and sound safety practices.

In 1992, the U.S. Occupational Safety and Health Administration began regulating occupational exposure to bloodborne pathogens and, as a result, employers are required to provide personal protective equipment (PPE) including eye and face protection for employees exposed to these hazards. At the time of the publication of this standard, no standards existed for eye and face protection intended to provide protection from bloodborne pathogens. Nevertheless, many employers have elected to provide their employees with PPE conforming to the requirements of ANSI/ISEA Z87.1. These products may or may not provide adequate protection against bloodborne pathogens. Extreme caution must be exercised in the selection and use of personal protective equipment in applications for which no performance requirements or standardized testing exist.

2. Scope, Purpose, Application, and Interpretations

2.1 Scope

This standard sets forth criteria related to the requirements, testing, permanent marking, selection, care, and use of protectors to minimize the occurrence and severity or prevention of injuries from such hazards as impact, non-ionizing radiation and liquid splash exposures in occupational and educational environments including, but not limited to, machinery operations, material welding and cutting, chemical handling, and assembly operations. Certain hazardous exposures are not covered in this standard. These include, but are not limited to: bloodborne pathogens, X-rays, high-energy particulate radiation, microwaves, radio-frequency radiation, lasers, masers, and sports and recreation.

2.2 Purpose

This standard provides minimum requirements for protectors including selection, use, and maintenance of these protectors as devices to minimize or prevent eye and face injuries.

2.3 Application

2.3.1 The requirements of this standard apply to protectors when first placed in service.

2.3.2 Protectors bearing the permanent marking Z87 shall meet all applicable requirements of this standard in its entirety. All components of eye and face protectors shall comply with the requirements of this standard. Accessories installed by the manufacturer shall not cause the protector to fail the requirements of this standard. Manufacturers of components, aftermarket components, accessories and complete protectors shall ensure that all required tests have been performed to demonstrate conformance.

2.3.3 Compliance with this standard cannot always be assured when components are replaced or accessories are added. End users should exercise extreme care in the selection and installation of components to ensure compliance with this standard.

2.3.4 Non-compliant components shall not be used with ANSI/ISEA Z87.1-compliant components.