Risk management – Risk assessment techniques

Management du risque – Techniques d'appréciation du risque
CONTENTS

FOREWORD .. 6
INTRODUCTION ... 8
1 Scope .. 9
2 Normative references .. 9
3 Terms and definitions ... 9
4 Core concepts .. 10
 4.1 Uncertainty ... 10
 4.2 Risk ... 11
5 Uses of risk assessment techniques ... 11
6 Implementing risk assessment .. 12
 6.1 Plan the assessment .. 12
 6.1.1 Define purpose and scope of the assessment ... 12
 6.1.2 Understand the context .. 13
 6.1.3 Engage with stakeholders .. 13
 6.1.4 Define objectives .. 13
 6.1.5 Consider human, organizational and social factors .. 13
 6.1.6 Review criteria for decisions ... 14
 6.2 Manage information and develop models .. 16
 6.2.1 General ... 16
 6.2.2 Collecting information .. 16
 6.2.3 Analysing data .. 16
 6.2.4 Developing and applying models ... 17
 6.3 Apply risk assessment techniques ... 18
 6.3.1 Overview ... 18
 6.3.2 Identifying risk .. 19
 6.3.3 Determining sources, causes and drivers of risk ... 19
 6.3.4 Investigating the effectiveness of existing controls .. 20
 6.3.5 Understanding consequences, and likelihood .. 20
 6.3.6 Analysing interactions and dependencies ... 22
 6.3.7 Understanding measures of risk .. 22
 6.4 Review the analysis ... 25
 6.4.1 Verifying and validating results .. 25
 6.4.2 Uncertainty and sensitivity analysis .. 25
 6.4.3 Monitoring and review .. 26
 6.5 Apply results to support decisions ... 26
 6.5.1 Overview ... 26
 6.5.2 Decisions about the significance of risk .. 27
 6.5.3 Decisions that involve selecting between options ... 27
 6.6 Record and report risk assessment process and outcomes .. 28
7 Selecting risk assessment techniques ... 28
 7.1 General .. 28
 7.2 Selecting techniques .. 29
Annex A (informative) Categorization of techniques .. 31
 A.1 Introduction to categorization of techniques ... 31
 A.2 Application of categorization of techniques .. 31
 A.3 Use of techniques during the ISO 31000 process .. 37
Annex B (informative) Description of techniques

B.1 Techniques for eliciting views from stakeholders and experts

B.1.1 General

B.1.2 Brainstorming

B.1.3 Delphi technique

B.1.4 Nominal group technique

B.1.5 Structured or semi-structured interviews

B.1.6 Surveys

B.2 Techniques for identifying risk

B.2.1 General

B.2.2 Checklists, classifications and taxonomies

B.2.3 Failure modes and effects analysis (FMEA) and failure modes, effects and criticality analysis (FMECA)

B.2.4 Hazard and operability (HAZOP) studies

B.2.5 Scenario analysis

B.2.6 Structured what if technique (SWIFT)

B.3 Techniques for determining sources, causes and drivers of risk

B.3.1 General

B.3.2 Cindynic approach

B.3.3 Ishikawa analysis (fishbone) method

B.4 Techniques for analysing controls

B.4.1 General

B.4.2 Bow tie analysis

B.4.3 Hazard analysis and critical control points (HACCP)

B.4.4 Layers of protection analysis (LOPA)

B.5 Techniques for understanding consequences and likelihood

B.5.1 General

B.5.2 Bayesian analysis

B.5.3 Bayesian networks and influence diagrams

B.5.4 Business impact analysis (BIA)

B.5.5 Cause-consequence analysis (CCA)

B.5.6 Event tree analysis (ETA)

B.5.7 Fault tree analysis (FTA)

B.5.8 Human reliability analysis (HRA)

B.5.9 Markov analysis

B.5.10 Monte Carlo simulation

B.5.11 Privacy impact analysis (PIA) / data protection impact analysis (DPIA)

B.6 Techniques for analysing dependencies and interactions

B.6.1 Causal mapping

B.6.2 Cross impact analysis

B.7 Techniques that provide a measure of risk

B.7.1 Toxicological risk assessment

B.7.2 Value at risk (VaR)

B.7.3 Conditional value at risk (CVaR) or expected shortfall (ES)

B.8 Techniques for evaluating the significance of risk

B.8.1 General

B.8.2 As low as reasonably practicable (ALARP) and so far as is reasonably practicable (SFAIRP)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.8.3</td>
<td>Frequency-number (F-N) diagrams</td>
<td>96</td>
</tr>
<tr>
<td>B.8.4</td>
<td>Pareto charts</td>
<td>98</td>
</tr>
<tr>
<td>B.8.5</td>
<td>Reliability centred maintenance (RCM)</td>
<td>100</td>
</tr>
<tr>
<td>B.8.6</td>
<td>Risk indices</td>
<td>102</td>
</tr>
<tr>
<td>B.9</td>
<td>Techniques for selecting between options</td>
<td>103</td>
</tr>
<tr>
<td>B.9.1</td>
<td>General</td>
<td>103</td>
</tr>
<tr>
<td>B.9.2</td>
<td>Cost/benefit analysis (CBA)</td>
<td>104</td>
</tr>
<tr>
<td>B.9.3</td>
<td>Decision tree analysis</td>
<td>106</td>
</tr>
<tr>
<td>B.9.4</td>
<td>Game theory</td>
<td>107</td>
</tr>
<tr>
<td>B.9.5</td>
<td>Multi-criteria analysis (MCA)</td>
<td>109</td>
</tr>
<tr>
<td>B.10</td>
<td>Techniques for recording and reporting</td>
<td>111</td>
</tr>
<tr>
<td>B.10.1</td>
<td>General</td>
<td>111</td>
</tr>
<tr>
<td>B.10.2</td>
<td>Risk registers</td>
<td>112</td>
</tr>
<tr>
<td>B.10.3</td>
<td>Consequence/likelihood matrix (risk matrix or heat map)</td>
<td>113</td>
</tr>
<tr>
<td>B.10.4</td>
<td>S-curves</td>
<td>117</td>
</tr>
</tbody>
</table>

Bibliography

- Figure A.1 – Application of techniques in the ISO 31000 risk management process [3] .. 37
- Figure B.1 – Example Ishikawa (fishbone) diagram .. 59
- Figure B.2 – Example of Bowtie .. 61
- Figure B.3 – A Bayesian network showing a simplified version of a real ecological problem: modelling native fish populations in Victoria, Australia .. 69
- Figure B.4 – Example of cause-consequence diagram .. 73
- Figure B.5 – Example of event tree analysis .. 75
- Figure B.6 – Example of fault tree .. 77
- Figure B.7 – Example of Markov diagram .. 80
- Figure B.8 – Example of dose response curve .. 89
- Figure B.9 – Distribution of value .. 91
- Figure B.10 – Detail of loss region VaR values ... 91
- Figure B.11 – VaR and CVaR for possible loss portfolio .. 93
- Figure B.12 – ALARP diagram .. 95
- Figure B.13 – Sample F-N diagram .. 97
- Figure B.14 – Example of a Pareto chart .. 98
- Figure B.15 – Part example of table defining consequence scales 114
- Figure B.16 – Part example of a likelihood scale ... 114
- Figure B.17 – Example of consequence/likelihood matrix .. 115
- Figure B.18 – Probability distribution function and cumulative distribution function 117

Tables

- Table A.1 – Characteristics of techniques ... 31
- Table A.2 – Techniques and indicative characteristics .. 32
- Table A.3 – Applicability of techniques to the ISO 31000 process 38
- Table B.1 – Examples of basic guidewords and their generic meanings 51
INTERNATIONAL ELECTROTECHNICAL COMMISSION

RISK MANAGEMENT – RISK ASSESSMENT TECHNIQUES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 31010 has been prepared by IEC technical committee 56: Dependability, in co-operation with ISO technical committee 262: Risk management.

It is published as a double logo standard.

This second edition cancels and replaces the first edition published in 2009. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- more detail is given on the process of planning, implementing, verifying and validating the use of the techniques;
- the number and range of application of the techniques has been increased;
- the concepts covered in ISO 31000 are no longer repeated in this standard.
The text of this International Standard is based on the following documents of IEC:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>56/1837/FDIS</td>
<td>56/1845/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. In ISO, the standard has been approved by 44 P members out of 46 having cast a vote.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.
INTRODUCTION

This document provides guidance on the selection and application of various techniques that can be used to help improve the way uncertainty is taken into account and to help understand risk.

The techniques are used:

- where further understanding is required about what risk exists or about a particular risk;
- within a decision where a range of options each involving risk need to be compared or optimized;
- within a risk management process leading to actions to treat risk.

The techniques are used within the risk assessment steps of identifying, analysing and evaluating risk as described in ISO 31000, and more generally whenever there is a need to understand uncertainty and its effects.

The techniques described in this document can be used in a wide range of settings, however the majority originated in the technical domain. Some techniques are similar in concept but have different names and methodologies that reflect the history of their development in different sectors. Techniques have evolved over time and continue to evolve, and many can be used in a broad range of situations outside their original application. Techniques can be adapted, combined and applied in new ways or extended to satisfy current and future needs.

This document is an introduction to selected techniques and compares their possible applications, benefits and limitations. It also provides references to sources of more detailed information.

The potential audience for this document is:

- anyone involved in assessing or managing risk;
- people who are involved in developing guidance that sets out how risk is to be assessed in specific contexts;
- people who need to make decisions where there is uncertainty including:
 - those who commission or evaluate risk assessments,
 - those who need to understand the outcomes of assessments, and
 - those who have to choose assessment techniques to meet particular needs.

Organizations that are required to conduct risk assessments for compliance or conformance purposes would benefit from using appropriate formal and standardized risk assessment techniques.