Second edition 2018-04

Turbines and turbine sets — Measurement of emitted airborne noise — Engineering/survey method

Turbines et groupes de turbines — Mesurage du bruit aérien émis — Méthode d'expertise/de contrôle

ISO 10494:2018(E)

This is a preview of "ISO 10494:2018". Click here to purchase the full version from the ANSI store.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	itents		Page
Forev	word		iv
Intro	oduction		v
1	Scope		1
2	Normative references		1
3	Terms and definitions		
4	Acoustic environment		5
•	4.1 Criteria of adequacy of the test environment		
	4.2 Criteria for background noise		
	4.3 Wind		
5	Instrumentation		
	Installation and operation of turbine set		
6	6.1 General		
	6.2 Mounting of turbine set		
	6.3 Operation of turbine set during test		
	6.4 Auxiliary equipment and coupled machines		
7	Sound pressure levels on the measurement surface		
	7.1 Reference surface and measurement surface7.2 Location and number of microphone positions		
	7.2.1 General		9
	7.2.2 Additional microphone positions on me	easurement surface	10
	7.2.3 Surface noise		
	7.3 Conditions of measurement		
	7.3.2 Calibration		11
	7.3.3 Measurement of the A-weighted sound	pressure level	11
	7.3.4 Measurement of sound pressure spectr		
8	Calculation of surface sound pressure level and sou	nd power level	12
	8.1 Corrections for background noise8.2 Calculation of sound pressure level averaged over		
	8.3 Calculation of surface time-averaged sound pres		
	8.4 Calculation of sound power level		13
	8.5 Calculation of directivity index and directivity fa		
9	Information to be recorded		
	9.1 General 9.2 Noise source under test		
	9.3 Acoustic environment		
	9.4 Instrumentation		
	9.5 Acoustical data		
10			
10	Test report		
	ex A (normative) Qualification procedures for the acou		
	ex B (normative) Gas turbines		
	ex C (normative) Steam turbines		31
Anne	ex D (informative) Calculation of directivity index and of hemispherical microphone array		36
Rihli.	ography		
וומומ	ograpity		J

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 192, *Gas Turbines*, in collaboration with Technical Committee IEC/TC 5, *Steam Turbines*.

This second edition cancels and replaces the first edition (ISO 10494:1993), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the measurement of airborne noise from steam turbines and steam turbine sets has been added;
- the content has been aligned with ISO 3744:2010 and ISO 3746:2010;
- the title has been updated.

Introduction

0.1 Background

Control of noise from machines or equipment requires effective exchange of acoustical information among the several parties concerned. These include the manufacturer, specifier, installer and user of the machine or equipment. This acoustical information is obtained from measurements.

These measurements are useful only if they are carried out under specified conditions to obtain defined acoustical quantities using standardized instruments.

The sound power level data determined according to this document is essentially independent of the environment in which the data are obtained. This is one of the reasons for using sound power level to characterize the sound emitted by various types of machine equipment.

Sound power level data are useful for the following:

- a) calculating the approximate sound pressure level at a given distance from a machine operating in a specified environment;
- b) comparing the noise radiated by machines of the same type and size;
- c) comparing the noise radiated by machines of different types and sizes;
- d) determining whether a machine complies with a specified upper limit of noise emission;
- e) planning in order to determine the amount of transmission loss or noise control required under certain circumstances;
- f) engineering work to assist in developing quiet machinery and equipment.

This document gives requirements for the measurement of the noise emission of turbines and turbine sets. It has been prepared in accordance with ISO 3740:2000 on the basis of ISO 3744:2010. Due to the special conditions concerning turbines and turbine sets, it is necessary to define different noise sources and to use measurement surfaces differing from those specified in ISO 3744:2010.

For some environmental conditions, it can be necessary to use the survey methods based on ISO 3746:2010 resulting in a lower grade of accuracy. Frequency information is still recorded and reported.

0.2 Aims

The methods defined in this document apply to the measurement of the noise emission of a turbine or turbine set under steady-state operating conditions. The results are expressed as sound pressure levels, and sound power levels in A-weighted and in octave bands.

The aim of this document is a grade 2 (engineering) result (see <u>Table 1</u>). When the correction for background noise exceeds the limit of 1.3 dB but is less than 3 dB and/or the correction for environment exceeds the limits of 4 dB but is less than 7 dB, then a grade 3 (survey) result is obtained (see <u>Table 2</u>).

Measurements made in conformity with this document should result in standard deviations which are equal to or less than those given in <u>Table 3</u>. The uncertainties in <u>Table 3</u> depend not only on the accuracies with which sound pressure levels and measurement surface areas are determined, but also on the "near-field error" which increases for smaller measurement distances and lower frequencies (i.e. those below 250 Hz). The near-field error always leads to measured sound power levels which are higher than the real sound power levels.

NOTE 1 If the methods specified in this document are used to compare the sound power levels of similar machines that are omnidirectional and radiate broad-band noise, the uncertainty in this comparison tends to result in standard deviations which are less than those given in <u>Table 3</u>, provided that the measurements are performed in the same environment with the same shape of measurement surface.

NOTE 2 The standard deviations given in <u>Table 3</u> reflect the cumulative effects of all causes of measurement uncertainty, excluding variations in the sound power levels from test to test which can be caused, for example, by changes in the mounting or operating conditions of the source. The reproducibility and repeatability of the test result can be considerably better (i.e. smaller standard deviations) than the uncertainties given in <u>Table 3</u> would indicate.

Table 1 — International Standards specifying various methods for determining the sound power levels of machines and equipment

International Standard	Classification of method	Test environment	Volume of source	Character of noise	Sound power levels obtainable			
Normative								
ISO 3744	Grade 2 (engineering)	Outdoors or in large rooms	No restrictions; limited only by available test environment	Any	A-weighted and in octave bands or one-third octave bands			
ISO 3746	Grade 3 (survey)		No restrictions; limited only by available test environment	Any	A-weighted			
		Informa	ntive					
ISO 3741	Grade 1 (precision)	Reverberation room meeting specified re- quirements	Less than 2 % of test room volume	Steady, non- steady, fluctu- ating, isolated bursts of sound energy, broad- band, discrete frequency	A-weighted and in octave bands or one-third octave bands			
ISO 3743-1	Grade 2 (engineering)	Hard-walled test room	Less than 2,5 % of test room volume	Steady, non- steady, fluctu- ating, isolated bursts of sound energy	A-weighted and in octave bands			
ISO 3743-2	Grade 2 (engineering)	Special reverberation test room	Preferably less than 1 % of test room volume	Steady, non- steady, fluctu- ating, broad- band, narrow- band, discrete frequency	A-weighted and in octave bands			
ISO 3745	Grade 1 (precision)	Anechoic- or hemi-anechoic room	Preferably less than 0,5 % of test room volume	Any	A-weighted and in one-third octave bands			
ISO 3747	Grade 2 and 3 (engineering and survey)	No special test environment, but sufficiently reverberant; source under test non-movable	No restrictions; limited only by available test environment	Steady, non- steady, fluctu- ating, isolated bursts of sound energy, primari- ly broad-band	A-weighted and in octave bands			
ISO 9614-1	Grade 1, 2 and 3 (precision, engineering and survey)	No special test environment	No restrictions ^b	Any, but station- ary in time	A-weighted and in octave bands or one-third octave			

a Method to determine the sound power of airborne noise caused by machinery surface vibration specifically.

For measurements in anechoic or hemi-anechoic rooms limited by the size of the test room.

Table 1 (continued)

International Standard	Classification of method	Test environment	Volume of source	Character of noise	Sound power levels obtainable
ISO 9614-2	Grade 2 and 3 (engineering and survey)	No special test environment	No restrictions ^b	Any, but station- ary in time	A-weighted and in octave bands or one-third octave bands
ISO 9614-3	Grade 1 (precision)	No special test environment	No restrictions ^b	Any, but station- ary in time	A-weighted and in octave bands or one-third octave bands
ISO/TS 7849-1a	Grade 3 (survey)	No special test environment	No restrictions	Any	A-weighted
ISO/TS 7849-2a	Grade 2 (engineering)	No special test environment	No restrictions	Any	A-weighted and in octave bands or one-third octave bands

Method to determine the sound power of airborne noise caused by machinery surface vibration specifically.

Table 2 — Limits for correction

Grade of accuracy	Background noise correction	Environment correction
	dB	dB
Grade 2	≤1,3	≤4
Grade 3	≤3	≤7
Special case ^a	>3	>7

^a For higher values of background noise and/or environmental corrections, the real sound power level cannot be determined with acceptable uncertainty, but the results can be useful to estimate an upper limit of the noise emission of the turbine or the turbine set to be tested.

Table 3 — Uncertainty in determining sound power levels and sound pressure levels, expressed as the standard deviation

Grade of	Octave band centre frequency				A-weighted	
accuracy	dB					dB
	31,5 Hz to 63 Hz	125 Hz	250 Hz to 500 Hz	1 000 Hz to 4 000 Hz	8 000 Hz	
Grade 2	5	3	2	1,5	2,5	2
Grade 3						3

NOTE 1 $\,$ Grade 3 uncertainty is related to stable conditions.

For measurements in anechoic or hemi-anechoic rooms limited by the size of the test room.

NOTE 2 The value of the standard deviation for air intake and gas exhaust outlet of gas turbines can be higher.