Safety of machinery — Safety-related parts of control systems —
Part 1: General principles for design

Sécurité des machines — Parties des systèmes de commande relatives à la sécurité —
Partie 1: Principes généraux de conception
Contents

Foreword vi
Introduction viii
1 Scope 1
2 Normative references 1
3 Terms, definitions, symbols and abbreviated terms 2

3.1 Terms and definitions 2
3.2 Symbols and abbreviated terms 10

4 Overview 12

4.1 Risk assessment and risk reduction process at the machine 12
4.2 Contribution to the risk reduction 14
4.3 Design process of an SRP/CS 14
4.4 Methodology 15
4.5 Required information 16
4.6 Safety function realization by using subsystems 17

5 Specification of safety functions 17

5.1 Identification and general description of the safety function 17
5.2 Safety requirements specification 18

5.2.1 General requirements 18
5.2.2 Requirements for specific safety functions 21
5.2.3 Minimizing motivation to defeat safety functions 24
5.2.4 Remote access 25

5.3 Determination of required performance level (PL) for each safety function 25
5.4 Review of the safety requirements specification (SRS) 26
5.5 Decomposition of SRP/CS into subsystems 26

6 Design considerations 27

6.1 Evaluation of the achieved performance level 27

6.1.1 General overview of performance level 27
6.1.2 Correlation between performance level (PL) and safety integrity level (SIL) 29
6.1.3 Architecture — Categories and their relation to MTTF_D of each channel, average diagnostic coverage and common cause failure (CCF) 29
6.1.4 Mean time to dangerous failure (MTTF_D) 36
6.1.5 Diagnostic coverage (DC) 37
6.1.6 Common cause failures (CCFs) 38
6.1.7 Systematic failures 38
6.1.8 Simplified procedure for estimating the performance level for subsystems 39
6.1.9 Alternative procedure to determine the performance level and PFH without MTTF_D 40

6.1.10 Fault consideration and fault exclusion 42
6.1.11 Well-tried component 43

6.2 Combination of subsystems to achieve an overall performance level of the safety function 43

6.2.1 General 43
6.2.2 Known PFH values 43
6.2.3 Unknown PFH values 44

6.3 Software based manual parameterization 44

6.3.1 General 44
6.3.2 Influences on safety-related parameters 45
6.3.3 Requirements for software based manual parameterization 46
6.3.4 Verification of the parameterization tool 47
6.3.5 Documentation of software based manual parameterization 47

7 Software safety requirements 47

7.1 General 47
ISO 13849-1:2023(E)

Annex E

Annex D

12 Technical documentation

13 Information for use

Annex A (informative) Guidance for the determination of required performance level (PL)

Annex B (informative) Block method and safety-related block diagram

Annex C (informative) Calculating or evaluating MTTF values for single components

Annex D (informative) Simplified method for estimating MTTF for each channel

Annex E (informative) Estimates for diagnostic coverage (DC) for functions and subsystems

Annex F (informative) Method for quantification of measures against common cause failures (CCF)

Annex G (informative) Systematic failure
Annex H (informative) Example of a combination of several subsystems .. 100
Annex I (informative) Examples for the simplified procedure to estimate the PL of subsystems .. 103
Annex J (informative) Example of SRESW realisation ... 111
Annex K (informative) Numerical representation of Figure 12 ... 115
Annex L (informative) Electromagnetic interference (EMI) immunity .. 120
Annex M (informative) Additional information for safety requirements specification (SRS) .. 124
Annex N (informative) Avoiding systematic failure in software design .. 126
Annex O (informative) Safety-related values of components or parts of control systems .. 146
Bibliography .. 149
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 199, Safety of machinery, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 114, Safety of machinery, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This fourth edition cancels and replaces the third edition (ISO 13849-1:2015), which has been technically revised.

The main changes are as follows:

— the whole document was reorganized to better follow the design and development process for control systems;
— new Clause 4 on recommendation for risk assessment;
— specification of the safety functions (updated Clause 5);
— combination of several subsystems (updated in Clause 6);
— new Clause 7 on software safety requirements;
— new Clause 9 on ergonomic aspects of design;
— validation (updated Clause 8 and moved to Clause 10);
— new G.5 on management of the functional safety;
— new Annex L on electromagnetic interference (EMI) immunity;
— new Annex M with additional information for safety requirements specification;
— new Annex N on fault-avoiding measures for the design of safety related software;
— new Annex O with safety-related values of components or parts of the control systems.
A list of all parts in the ISO 13849 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

The structure of safety standards in the field of machinery is as follows:

a) Type-A standards (basis standards) give basic concepts, principles for design and general aspects that can be applied to machinery.

b) Type-B standards (generic safety standards) deal with one or more safety aspect(s), or one or more type(s) of safeguards that can be used across a wide range of machinery:
 - type-B1 standards on particular safety aspects (e.g. safety distances, surface temperature, noise);
 - type-B2 standards on safeguards (e.g. two-hand controls, interlocking devices, pressure sensitive devices, guards).

c) Type-C standards (machinery safety standards) deal with detailed safety requirements for a particular machine or group of machines.

This document is a type-B1 standard as defined in ISO 12100:2010.

The first edition of this document was published in 1999 based on EN 954-1:1996 (withdrawn standard). The second edition was revised in 2006 and the third edition was revised in 2015.

This document is of relevance, in particular for the following stakeholder groups with regard to machinery safety:

- machine manufacturers (small, medium and large enterprises);
- health and safety bodies (regulators, accident prevention organisations, market surveillance).

Others can be affected by the level of machinery safety achieved with the means of the document:

- machine users/employers (small, medium and large enterprises);
- machine users/employees (e.g. trade unions);
- service providers, e.g. for maintenance (small, medium and large enterprises);
- consumers (i.e. machinery intended for use by consumers).

The above-mentioned stakeholder groups have been given the possibility to participate in the drafting process of this document.

In addition, this document is intended for standardization bodies elaborating type-C standards, as defined in ISO 12100:2010.

The requirements of this document can be supplemented or modified by a type-C standard.

For machines which are covered by the scope of a type-C standard and which have been designed and built according to the requirements of that standard, the requirements of that type-C standard take precedence.

NOTE 1 The examples and basis for most content is based on stationary machines in factory applications. However, other machines are not excluded. This document was written without considering if certain machinery (e.g. mobile machinery) has specific requirements. However, this document is intended to be used across many machinery industries and as a basis for type-C standards developers, as far as applicable.

This document is intended to give guidance to those involved in the design and assessment of control systems, and those preparing type-B2 or type-C standards.

Risk reduction according to ISO 12100:2010, Clause 6, is accomplished by applying, in the following sequence, inherently safe design measures, safeguarding and/or complementary risk reduction
measures and information for use. A designer can reduce risks by risk reduction measures that can have safety functions. Parts of machinery control systems that are assigned to provide safety functions are called safety-related parts of control systems (SRP/CS). These can consist of hardware or a combination of hardware and software and can either be separate from the machine control system or an integral part of it. In addition to implementing safety functions, SRP/CS can also implement operational functions.

ISO 12100:2010 is used for risk assessment of the machine. Annex A of this document can be used for the determination of the required performance level (PL_r) of a safety function performed by the SRP/CS, where its PL_r is not specified in the applicable type-C standard. This document is relevant for the SRP/CS safety functions that are used to address risks for cases where a risk assessment conducted according to ISO 12100:2010 determines that a risk reduction measure is needed that relies on a safety function (e.g. interlocking guard). In those cases, the safety-related control system performs a safety function. This document is intended to be used to design and evaluate the SRP/CS. Only the part of the control system that is safety-related falls under the scope of this document.

Figure 1 illustrates the relationship between ISO 12100:2010 and this document. For a detailed overview see Figure 2.

NOTE 2 See also ISO/TR 22100-2:2013 for further information.

Figure 1 — Integration of this document (ISO 13849-1) within the risk reduction process of ISO 12100:2010

NOTE 3 Figure 1 shows where the SRP/CS contributes to the risk reduction process of ISO 12100:2010: Step 2. The SRP/CS supports the combined risk reduction measures by the implementation of safety functions. The ability of safety-related parts of control systems to perform a safety function under foreseeable conditions is allocated one of five levels, called performance levels (PL). The required performance level (PL_r) for a particular safety function (depending on the required risk reduction) will be determined by risk estimation.

Informative Annex A of this document contains a method for risk estimation and can be used for the determination of the PL_r of a safety function performed by the SRP/CS. Any risk estimation method will show a variance because of the subjective nature of the evaluation criteria. In comparison to Annex A, type-C standards can have more specific risk estimation methods for specific machine applications.

The frequency of dangerous failure of the safety function depends on several factors, including but not limited to, hardware and software structure, the extent of fault detection mechanisms [diagnostic
coverage (DC), reliability of components [mean time to dangerous failure (MTTF\textsubscript{D}), common cause failure (CCF)], design process, operating stress, environmental conditions and operation procedures.

In order to facilitate the design of SRP/CS and the assessment of achieved PL, this document employs a methodology based on the categorization of architectures with specific design criteria (e.g. MTTF\textsubscript{D}, DC\textsubscript{avg}) and specified behaviour under fault conditions. These architectures are allocated one of five levels termed Categories B, 1, 2, 3 and 4.

Functional safety considers the failure characteristics of elements/components performing a safety function. For each safety function, this failure characteristic is expressed as the frequency of dangerous failure per hour (PFH).

The performance levels and categories can be applied to SRP/CS, e.g.:
- control units (e.g. a logic unit for control functions, data processing, monitoring);
- electro-sensitive protective devices (e.g. photoelectric barriers), pressure sensitive devices.

The performance levels can be defined, and categories determined, for subsystems of SRP/CS using safety parts (components), e.g.:
- protective devices (e.g. two-hand control devices, interlocking devices);
- power control elements (e.g. relays, valves);
- sensors and HMI elements (e.g. position sensors, enable switches).

Machinery covered by this document can range from simple (e.g. small kitchen machines, or automatic doors and gates) to complex (e.g. packaging machines, printing machines, presses and integrated machinery into a system).

This document and IEC 62061 both specify a methodology and provide related guidance for the design and implementation of safety-related control systems of machinery.

The requirements of Clause 10 of this document supersede the requirements of ISO 13849-2:2012 (excluding the informative annexes).