Petroleum and natural gas industries — Materials for use in H2S-containing environments in oil and gas production —

Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys

Industries du pétrole et du gaz naturel — Matériaux pour utilisation dans des environnements contenant de l’hydrogène sulfuré (H2S) dans la production de pétrole et de gaz —

Partie 3: ARC (alliages résistants à la corrosion) et autres alliages résistants à la fissuration
Contents

Foreword... iv
Introduction... v
1 Scope.. 1
2 Normative references.. 2
3 Terms and definitions... 3
4 Symbols and abbreviated terms.. 4
5 Factors affecting the cracking-resistance of CRAs and other alloys in H₂S-containing environments...................... 5
6 Qualification and selection of CRAs and other alloys with respect to SSC, SCC, and GHSC in H₂S-containing environments.. 5
 6.1 General.. 5
 6.2 Evaluation of materials properties... 6
 6.2.1 Hardness of parent metals.. 6
 6.2.2 Cracking-resistance properties of welds.. 6
 6.2.3 Cracking-resistance properties associated with other fabrication methods.. 8
 6.3 PREN.. 8
7 Purchasing information and marking.. 8
 7.1 Information that should be supplied for material purchasing... 8
 7.2 Marking, labelling, and documentation.. 9
Annex A (normative) Environmental cracking-resistant CRAs and other alloys (including Table A.1 — Guidance on the use of the materials selection tables).. 10
Annex B (normative) Qualification of CRAs for H₂S-service by laboratory testing... 56
Annex C (informative) Information that should be supplied for material purchasing... 66
Annex D (informative) Materials chemical compositions and other information.. 68
Annex E (informative) Nominated sets of test conditions.. 84
Bibliography... 85
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries.

This third edition cancels and replaces the second edition (ISO 15156-3:2009), which has been technically revised with the following changes:

— replacement in the Scope of the term “conventional elastic design criteria” by the term “load controlled design methods”;

— refinements to 6.3 to require the use of absolute values when \(F_{\text{PREN}} \) is calculated for use in this part of ISO 15156;

— acceptance of the environmental limits for low carbon 300 series stainless steels also for their dual certified grades;

— changes to some of the tables of Annex A to more conservatively reflect the current knowledge of the limits of use of some materials;

— changes to the definition of acceptable limits to \(\text{in situ} \) production environment pH in some tables of Annex A;

— additions to a number of tables of Annex A of new sets of acceptable environmental limits for (new) materials and their associated metallurgical requirements.

ISO 15156 consists of the following parts, under the general title Petroleum and natural gas industries — Materials for use in H2S-containing environments in oil and gas production:

— Part 1: General principles for selection of cracking-resistant materials

— Part 2: Cracking-resistant carbon and low-alloy steels, and the use of cast irons

— Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys
Introduction

The consequences of sudden failures of metallic oil and gas field components associated with their exposure to H₂S-containing production fluids led to the preparation of the first edition of NACE MR0175 which was published in 1975 by the National Association of Corrosion Engineers, now known as NACE International.

The original and subsequent editions of NACE MR0175 established limits of H₂S partial pressure above which precautions against sulfide stress-cracking (SSC) were always considered necessary. They also provided guidance for the selection and specification of SSC-resistant materials when the H₂S thresholds were exceeded. In more recent editions, NACE MR0175 has also provided application limits for some corrosion-resistant alloys in terms of environmental composition and pH, temperature, and H₂S partial pressures.

In separate developments, the European Federation of Corrosion issued EFC Publication 16 in 1995 and EFC Publication 17 in 1996. These documents are generally complementary to those of NACE, though they differed in scope and detail.

In 2003, the publication of the ISO 15156-series and NACE MR0175/ISO 15156 was completed for the first time. These technically identical documents utilized the above sources to provide requirements and recommendations for materials qualification and selection for application in environments containing wet H₂S in oil and gas production systems. They are complemented by NACE TM0177 and NACE TM0284 test methods.

The changes were developed by and approved by the ballot of representative groups from within the oil and gas production industry. The great majority of these changes stem from issues raised by document users. A description of the process by which these changes were approved can be found at the ISO 15156 maintenance website: www.iso.org/iso15156maintenance.

Technical Circular ISO 15156-3:2009/Cir.2:2013 and Technical Circular ISO 15156-3:2009/Cir.3:2014 intend that an informative Annex F should be published for this part of ISO 15156 that was to give an alternative presentation of the information contained in the materials selection tables of Annex A.

During final editing of this part of ISO 15156, a number of technical errors were found in the transfer of information between the materials selection tables of Annex A and Table F.1. In order not to delay the publication of the new edition of this part of ISO 15156, the ISO 15156 Maintenance Agency agreed that the proposed Annex F should not be published at this time.

When found necessary by oil and gas production industry experts, future interim changes to this part of ISO 15156 will be processed in the same way and will lead to interim updates to this part of ISO 15156 in the form of Technical Corrigenda or Technical Circulars. Document users should be aware that such documents can exist and can impact the validity of the dated references in this part of ISO 15156.

The ISO 15156 Maintenance Agency at DIN was set up after approval by the ISO Technical Management Board given in document 34/2007. This document describes the make up of the agency which includes experts from NACE, EFC and ISO/TC 67, and the process for approval of amendments. It is available from the ISO 15156 maintenance website and from the ISO/TC 67 Secretariat. The website also provides access to related documents that provide more detail of ISO 15156 maintenance activities.