Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) —

Part 2:
Transport protocol and network layer services

Véhicules routiers — Communication de diagnostic sur gestionnaire de réseau de communication (DoCAN) —

Partie 2: Protocole de transport et services de la couche réseau
Contents

Foreword ..vi
Introduction ..vi
1 Scope ...1
2 Normative references ..1
3 Terms, definitions and abbreviated terms ..2
 3.1 Terms and definitions ...2
 3.2 Abbreviated terms ..2
4 Conventions ..3
5 Document overview ...3
6 ISO 11898-1 CAN data link layer extension ...4
 6.1 CLASSICAL CAN and CAN FD frame feature comparison ...4
 6.2 Illustration of CAN parameters for transport protocol and network layer services5
 6.3 Additional requirements for CAN FD ...6
7 Network layer overview ..7
 7.1 General ..7
 7.2 Services provided by network layer to higher layers ...7
 7.3 Internal operation of network layer ...8
8 Network layer services ...10
 8.1 General ...10
 8.2 Specification of network layer service primitives ..11
 8.2.1 N_USData.request ..11
 8.2.2 N_USData.confirm ..11
 8.2.3 N_USData_FFIndication ...11
 8.2.4 N_USData.indication ...12
 8.2.5 N_ChangeParameters.request ..12
 8.2.6 N_ChangeParameter.confirm ...13
 8.3 Service data unit specification ...13
 8.3.1 Mtype, message type ...13
 8.3.2 N_AI, address information ..13
 8.3.3 <Length> ...16
 8.3.4 <MessageData> ..16
 8.3.5 <Parameter> ..16
 8.3.6 <Parameter_Value> ...16
 8.3.7 <N_Result> ...16
 8.3.8 <Result_ChangeParameter> ...17
9 Transport layer protocol ..18
 9.1 Protocol functions ..18
 9.2 SingleFrame transmission ...18
 9.2.1 SingleFrame transmission with TX_DL = 8 ..18
 9.2.2 SingleFrame transmission with TX_D > 8 ...19
 9.3 Multiple-frame transmission ..19
 9.4 Transport layer protocol data units ...21
 9.4.1 Protocol data unit types ..21
 9.4.2 SF_N_PDU ...21
 9.4.3 FF_N_PDU ...21
 9.4.4 CF_N_PDU ...21
 9.4.5 FC_N_PDU ...21
 9.4.6 Protocol data unit field description ...22
 9.5 Transmit data link layer data length (TX_DL) configuration ..22
 9.5.1 Definition of TX_DL configuration values ...22
 9.5.2 Creating CAN frames based on N_TAtype and TX_DL ...23
ISO 15765-2:2016(E)

This is a preview of "ISO 15765-2:2016". Click here to purchase the full version from the ANSI store.

9.5.3 Verifying the correctness of received CAN frames ... 23
9.5.4 Receiver determination RX_DL ... 25
9.6 Protocol control information specification ... 25
 9.6.1 N_PCI .. 25
 9.6.2 SingleFrame N_PCI parameter definition ... 26
 9.6.3 FirstFrame N_PCI parameter definition ... 28
 9.6.4 ConsecutiveFrame N_PCI parameter definition .. 29
 9.6.5 FlowControl N_PCI parameter definition .. 30
9.7 Maximum number of FC.WAIT frame transmissions (N_WFTmax) 33
9.8 Network layer timing ... 33
 9.8.1 Timing parameters .. 33
 9.8.2 Network layer timeouts ... 37
 9.8.3 Unexpected arrival of N_PDU .. 37
 9.8.4 Wait frame error handling ... 39
9.9 Interleaving of messages ... 39

10 Data link layer usage ... 39
 10.1 Data link layer service parameters ... 39
 10.2 Data link layer interface services .. 39
 10.2.1 L_Data.request ... 39
 10.2.2 L_Data.confirm .. 39
 10.2.3 L_Data.indication ... 40
 10.3 Mapping of the N_PDU fields ... 40
 10.3.1 Addressing formats .. 40
 10.3.2 Normal addressing ... 40
 10.3.3 Normal fixed addressing .. 41
 10.3.4 Extended addressing .. 41
 10.3.5 Mixed addressing ... 42
 10.4 CAN frame data length code (DLC) ... 43
 10.4.1 DLC parameter .. 43
 10.4.2 CAN frame data .. 43
 10.4.3 Data length code (DLC) error handling ... 45

Annex A (normative) Use of normal fixed and mixed addressing with data link layer
 according to SAE J1939 ... 46

Annex B (normative) Reserved CAN IDs .. 49

Bibliography ... 50
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 22, Road vehicles, Subcommittee SC 31, Data communication.

This third edition cancels and replaces the second edition (ISO 15765-2:2011), which has been technically revised.

ISO 15765 consists of the following parts, under the general title Road vehicles — Diagnostic communication over Controller Area Network (DoCAN)\(^1\):

— Part 1: General information and use case definition
— Part 2: Transport protocol and network layer services
— Part 4: Requirements for emissions-related systems

\(^1\) ISO 15765-3 Implementation of unified diagnostic services (UDS on CAN) has been withdrawn and replaced by ISO 14229-3 Road vehicles — Unified diagnostic services (UDS) — Part 3: Unified diagnostic services on CAN implementation (UDSonCAN)
Introduction

This part of ISO 15765 has been established in order to define common requirements for vehicle diagnostic systems implemented on a controller area network (CAN) communication link, as specified in ISO 11898-1. Although primarily intended for diagnostic systems, it also meets requirements from other CAN-based systems needing a network layer protocol.

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers as shown in Table 1.

Table 1 — Enhanced and legislated on-board diagnostics specifications applicable to the OSI layers

<table>
<thead>
<tr>
<th>OSI 7 layers a</th>
<th>Vehicle-manufacturer-enhanced diagnostics</th>
<th>Legislated OBD (on-board diagnostics)</th>
<th>Legislated WWH-OBD (on-board diagnostics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application (layer 7)</td>
<td>ISO 14229-1, ISO 14229-3</td>
<td>ISO 15031-5</td>
<td>ISO 27145-3, ISO 14229-1</td>
</tr>
<tr>
<td>Session (layer 5)</td>
<td>ISO 14229-2</td>
<td>ISO 14229-2</td>
<td></td>
</tr>
<tr>
<td>Data link (layer 2)</td>
<td>ISO 11898-1</td>
<td>ISO 11898-1</td>
<td>ISO 11898-1</td>
</tr>
<tr>
<td>Physical (layer 1)</td>
<td>ISO 11898-1, ISO 11898-2, ISO 11898-3, or vehicle manufacturer specific</td>
<td>ISO 11898-1, ISO 11898-2</td>
<td>ISO 11898-1, ISO 11898-2</td>
</tr>
</tbody>
</table>

a 7 layers according to ISO/IEC 7498-1 and ISO/IEC 10731

The application layer services covered by ISO 14229-3 have been defined in compliance with diagnostic services established in ISO 14229-1 and ISO 15031-5 but are not limited to use only with them. ISO 14229-3 is also compatible with most diagnostic services defined in national standards or vehicle manufacturer's specifications.

For other application areas, ISO 15765 can be used with any CAN physical layer.