First edition 2008-11-01

Indoor air —

Part 13:

Determination of total (gas and particlephase) polychlorinated dioxin-like biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Collection on sorbentbacked filters

Air intérieur —

Partie 13: Dosage des polychlorobiphényles (PCB) de type dioxine et des polychlorodibenzo-p-dioxines (PCDD)/polychlorodibenzofuranes (PCDF) totaux (en phase gazeuse et en phase particulaire) — Collecte sur des filtres adsorbants

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Conte	nts	Page
Forewore	d	iv
Introduc	ntroduction	
1 S	Scope	1
2 N	lormative references	1
3 Т	erms and definitions	2
4 A	Abbreviated terms	3
5 P	Principle	4
6 A	Apparatus and materials	4
7 P	Preparation of sampling media	9
	Sampling	
9 N	linimum requirements for sampling	12
Annex A	(informative) Details of samplers	13
Annex B	(normative) Determination of sampling efficiency or dynamic retention efficiency	24
Annex C	(informative) Structure, toxicity and calculation of toxicity equivalents	25
	aphy	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16000-13 was prepared by Technical Committee ISO/TC 146, Air quality, Subcommittee SC 6, Indoor air.

ISO 16000 consists of the following parts, under the general title *Indoor air*:

- Part 1: General aspects of sampling strategy
- Part 2: Sampling strategy for formaldehyde
- Part 3: Determination of formaldehyde and other carbonyl compounds Active sampling method
- Part 4: Determination of formaldehyde Diffusive sampling method
- Part 5: Sampling strategy for volatile organic compounds (VOCs)
- Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA[®] sorbent, thermal desorption and gas chromatography using MS/FID
- Part 7: Sampling strategy for determination of airborne asbestos fibre concentrations
- Part 8: Determination of local mean ages of air in buildings for characterizing ventilation conditions
- Part 9: Determination of the emission of volatile organic compounds from building products and furnishing — Emission test chamber method
- Part 10: Determination of the emission of volatile organic compounds from building products and furnishing — Emission test cell method
- Part 11: Determination of the emission of volatile organic compounds from building products and furnishing — Sampling, storage of samples and preparation of test specimens
- Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
- Part 13: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) Collection on sorbent-backed filters

- Part 14: Determination of total (gas and particle-phase) polychlorinated dioxin-like biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/PCDFs) — Extraction, clean-up and analysis by high-resolution gas chromatography and mass spectrometry
- Part 15: Sampling strategy for nitrogen dioxide (NO₂)
- Part 16: Detection and enumeration of moulds Sampling by filtration
- Part 17: Detection and enumeration of moulds Culture-based method
- Part 23: Performance test for evaluating the reduction of formaldehyde concentrations by sorptive building materials
- Part 24: Performance test for evaluating the reduction of volatile organic compounds and carbonyl compounds without formaldehyde concentrations by sorptive building materials

The following parts are under preparation:

- Part 18: Detection and enumeration of moulds Sampling by impaction
- Part 19: Sampling strategy for moulds
- Part 25: Determination of the emission of semi-volatile organic compounds for building products Micro-chamber method
- Part 26: Measurement strategy for carbon dioxide (CO₂)
- Part 28: Sensory evaluation of emissions from building materials and products

The following parts are planned:

- Part 20: Detection and enumeration of moulds Sampling from house dust
- Part 21: Detection and enumeration of moulds Sampling from materials
- Part 22: Detection and enumeration of moulds Molecular methods
- Part 27: Standard method for the quantitative analysis of asbestos fibres in settled dust

Furthermore,

- ISO 12219-1^[2] (under preparation), Indoor air Road vehicles Part 1: Whole vehicle test chamber Specification and method for the determination of volatile organic compounds in car interiors,
- ISO 16017-1^[3], Indoor, ambient and workplace air Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — Part 1: Pumped sampling, and
- ISO 16017-2^[4], Indoor, ambient and workplace air Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — Part 2: Diffusive sampling

focus on volatile organic compound (VOC) measurements.

Introduction

The different parts of ISO 16000 describe general requirements relating to the measurement of indoor air pollutants and the important conditions to be observed before or during the sampling of individual pollutants or groups of pollutants as well as the measurement procedures themselves (see Foreword).

This part of ISO 16000 is applicable to the collection from indoor air of dioxin-like polychlorinated biphenyls (PCBs), polychlorinated dibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) and to the preparation of sampling media required for sampling. The same sampling methods described here are also applicable to polycyclic aromatic hydrocarbons (PAHs) made up of two or more fused aromatic rings. Procedures for preparation and extraction of sampling media for PAHs and for the analytical determination of PAHs are given in ISO 12884, and therefore are not included here.

The sampling strategy to analyse PCBs, PCDDs/PCDFs and PAHs in indoor air is described in ISO 16000-12.

Several PCBs and PCDDs/PCDFs are considered to be potential human carcinogens. There are 209 individual PCBs (congeners), 75 PCDDs and 135 PCDFs. The most toxic PCBs are those that are coplanar and structurally similar to PCDDs. The most toxic PCDD is 2,3,7,8-tetrachlorodibenzodibenzo-p-dioxin (2,3,7,8-TCDD).

PCBs are emitted into the indoor air primarily from concrete sealers, certain paints, or electrical capacitors, all of which have been banned in recent years. The principal sources of PCDDs/PCDFs in indoor air are impurities in wood preservatives containing pentachlorophenol (PCP) and emissions from fires involving chlorinated products. Tracked-in soil and emissions from nearby landfills and abandoned industrial sites may also contribute PCBs and PCDDs/PCDFs to the indoor environment.

Total PCB concentrations (six marker PCBs: PCB-28, -52, -101, -138, -153, and -180 multiplied by 5) in urban outdoor air typically range from 10 to several hundred picograms per cubic metre (pg/m³). PCDDs/PCDFs are usually found in urban outdoor air at extremely low concentrations; e.g. femtograms per cubic metre (fg/m³) to picograms per cubic metre (pg/m³). PCBs and PCDDs/PCDFs may be distributed between the gas and particle-associated phases in ambient or indoor air, depending on the temperature, humidity, degree of chlorination, their concentration, and their capacity to associate with suspended particulate matter. These compounds, especially those having vapour pressures above 10⁻⁸ kPa, will tend to vaporize from particle filters during sampling. Consequently, a back-up sorbent trap is included for efficient sampling. Separate analyses of the filter and sorbent trap will not reflect the original atmospheric phase distributions at normal ambient temperatures because of volatilization of compounds from the filter and should not be attempted.

Shipping of PCDD/PCDF standards has to comply with the national legal regulations. They have to be transported in special containers, which are commercially available. Handling should only be done by trained operators.

This part of ISO 16000 describes sampling of polychlorinated dioxin-like biphenyls (PCBs) and polychlorinated dibenzo-*p*-dioxins/dibenzofurans (PCDDs/PCDFs). Extraction, clean-up and analysis are described in ISO 16000-14.