Sterilization of health care products — Moist heat —

Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices

Stérilisation des produits de santé — Chaleur humide —

Partie 1: Exigences pour le développement, la validation et le contrôle de routine d’un procédé de stérilisation des dispositifs médicaux
Contents

Foreword ... vi
Introduction .. vii

1 Scope .. 1
1.1 Inclusions ... 1
1.2 Exclusions .. 1

2 Normative references .. 2

3 Terms and definitions .. 3

4 Quality management system elements .. 10

4.1 Documentation .. 10
4.2 Management responsibility .. 10
4.3 Product realization .. 10
4.4 Measurement, analysis and improvement — Control of non-conforming product 10

5 Sterilizing agent characterization ... 11

5.1 Sterilizing agent .. 11
5.2 Microbicidal effectiveness ... 11
5.3 Materials effects ... 11
5.4 Environmental consideration .. 11

6 Process and equipment characterization .. 11

6.1 Process .. 11
6.1.1 General ... 11
6.1.2 Saturated steam processes ... 12
6.1.3 Contained product processes ... 12
6.2 Equipment .. 13

7 Product definition ... 14

8 Process definition .. 15

9 Validation .. 17

9.1 General .. 17
9.2 Installation qualification (IQ) .. 17
9.2.1 Equipment ... 17
9.2.2 Installation ... 17
9.2.3 Function .. 17
9.3 Operational qualification (OQ) ... 18
9.4 Performance qualification (PQ) ... 18
9.5 Review and approval of validation ... 19

10 Routine monitoring and control .. 20

11 Product release from sterilization .. 21

12 Maintaining process effectiveness .. 21

12.1 Demonstration of continued effectiveness .. 21
12.2 Recalibration ... 21
12.3 Maintenance of equipment ... 21
12.4 Requalification ... 22
12.5 Assessment of change .. 22

Annex A (informative) Guidance .. 23

Annex B (informative) Process definition based on inactivation of the microbial population in its natural state (bioburden-based method) ... 27
Annex C (informative) Process definition based on the inactivation of a reference microorganism and a knowledge of bioburden on product items to be sterilized (combined bioburden/biological indicator based method) .. 28

Annex D (informative) Conservative process definition based on inactivation of reference microorganisms (overkill method) .. 29

Annex E (informative) Operating cycles ... 31

Bibliography ... 36
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 17665-1 was prepared by Technical Committee ISO/TC 198, Sterilization of health care products.

This first edition of ISO 17665-1 cancels and replaces ISO 11134:1994 and ISO 13683:1997 both of which have been technically revised.

ISO 17665 consists of the following parts, under the general title Sterilization of health care products — Moist heat:

— Part 1: Requirements for the development, validation and routine control of a sterilization process for medical devices

— Part 2: Guidance on the application of ISO 17665-1
Introduction

A sterile medical device is one which is free of viable microorganisms. International standards that specify requirements for validation and routine control of sterilization processes require, when it is necessary to supply a sterile medical device, that adventitious microbiological contamination of a medical device prior to sterilization be minimized. Even so, medical devices produced under standard manufacturing conditions in accordance with the requirements for quality management systems (see, for example, ISO 13485) may, prior to sterilization, have microorganisms on them, albeit in low numbers. Such products are non-sterile. The purpose of sterilization is to inactivate the microbiological contaminants and thereby transform the non-sterile products into sterile ones.

The kinetics of inactivation of a pure culture of microorganisms by physical and/or chemical agents used to sterilize medical devices generally can best be described by an exponential relationship between the number of microorganisms surviving and the extent of treatment with the sterilizing agent; inevitably this means that there is always a finite probability that a microorganism may survive regardless of the extent of treatment applied. For a given treatment, the probability of survival is determined by the number and resistance of microorganisms and by the environment in which the organisms exist during treatment. It follows that the sterility of any one product in a population subjected to sterilization processing cannot be guaranteed and the sterility of a processed population is defined in terms of the probability of there being a viable microorganism present on a product item.

ISO 17665 describes requirements that, if met, will provide a moist heat sterilization process intended to sterilize medical devices, which has appropriate microbicidal activity. Furthermore, compliance with the requirements ensures this activity is both reliable and reproducible so that predictions can be made, with reasonable confidence, that there is a low level of probability of there being a viable microorganism present on product after sterilization. Specification of this probability is a matter for regulatory authorities and may vary from country to country (see, for example, EN 556-1 and ANSI/AAMI ST67).

Generic requirements of the quality management system for design and development, production, installation and servicing are given in ISO 9001 and particular requirements for quality management systems for medical device production are given in ISO 13485. The standards for quality management systems recognise that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of the sterilization process is monitored routinely and the equipment is maintained.

Exposure to a properly validated, accurately controlled sterilization process is not the only factor associated with the provision of reliable assurance that the product is sterile and, in this regard, suitable for its intended use. Attention is therefore given to a number of factors including:

a) the microbiological status of incoming raw materials and/or components;
b) the validation and routine control of any cleaning and disinfection procedures used on the product;
c) the control of the environment in which the product is manufactured, assembled and packaged;
d) the control of equipment and processes;
e) the control of personnel and their hygiene;
f) the manner and materials in which the product is packaged;
g) the conditions under which product is stored.
The type of contamination on a product to be sterilized varies and this has an impact upon the effectiveness of a sterilization process. It is preferable that products that have been used in a health care setting and that are being presented for resterilization in accordance with the manufacturer's instructions (see ISO 17664) be regarded as special cases. There is the potential for such products to possess a wide range of contaminating microorganisms and residual inorganic and/or organic contamination in spite of the application of a cleaning process. Hence, particular attention has to be given to the validation and control of the cleaning and disinfection processes used during reprocessing.

This part of ISO 17665 describes the requirements for ensuring that the activities associated with the process of moist heat sterilization are performed properly. These activities are described in documented work programmes designed to demonstrate that the moist heat sterilization process will consistently yield sterile products on treatment with process variables falling within the predetermined limits.

The requirements are the normative parts of this part of ISO 17665 with which compliance is claimed. The guidance given in the informative annexes is not normative and is not provided as a checklist for auditors. The guidance provides explanations and methods that are regarded as being suitable means for complying with the requirements. Methods other than those given in the guidance may be used, if they are effective in achieving compliance with the requirements of this part of ISO 17665.

The development, validation and routine control of a sterilization process comprise a number of discrete but interrelated activities, e.g. calibration, maintenance, product definition, process definition, installation qualification, operational qualification and performance qualification. While the activities required by this part of ISO 17665 have been grouped together and are presented in a particular order, this part of ISO 17665 does not require that the activities be performed in the order that they are presented. The activities required are not necessarily sequential, as the programme of development and validation may be iterative. It is possible that performing these different activities will involve a number of separate individuals and/or organizations, each of whom undertake one or more of these activities. This part of ISO 17665 does not specify the particular individuals or organizations to carry out the activities.