Petroleum and natural gas industries — Fixed steel offshore structures

Industries du pétrole et du gaz naturel — Structures en mer fixes en acier
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Symbols</td>
<td>9</td>
</tr>
<tr>
<td>5 Abbreviated terms</td>
<td>13</td>
</tr>
<tr>
<td>6 Overall considerations</td>
<td>15</td>
</tr>
<tr>
<td>6.1 Types of fixed steel offshore structure</td>
<td>15</td>
</tr>
<tr>
<td>6.2 Planning</td>
<td>17</td>
</tr>
<tr>
<td>6.3 Service and operational considerations</td>
<td>17</td>
</tr>
<tr>
<td>6.4 Safety considerations</td>
<td>18</td>
</tr>
<tr>
<td>6.5 Environmental considerations</td>
<td>19</td>
</tr>
<tr>
<td>6.6 Exposure levels</td>
<td>20</td>
</tr>
<tr>
<td>6.7 Assessment of existing structures</td>
<td>22</td>
</tr>
<tr>
<td>6.8 Structure reuse</td>
<td>22</td>
</tr>
<tr>
<td>7 General design requirements</td>
<td>23</td>
</tr>
<tr>
<td>7.1 General</td>
<td>23</td>
</tr>
<tr>
<td>7.2 Incorporating limit states</td>
<td>23</td>
</tr>
<tr>
<td>7.3 Determining design situations</td>
<td>23</td>
</tr>
<tr>
<td>7.4 Structural modelling and analysis</td>
<td>24</td>
</tr>
<tr>
<td>7.5 Design for pre-service and removal situations</td>
<td>24</td>
</tr>
<tr>
<td>7.6 Design for the in-place situation</td>
<td>24</td>
</tr>
<tr>
<td>7.7 Determination of resistances</td>
<td>24</td>
</tr>
<tr>
<td>7.8 Strength and stability checks</td>
<td>25</td>
</tr>
<tr>
<td>7.9 Robustness</td>
<td>26</td>
</tr>
<tr>
<td>7.10 Reserve strength</td>
<td>26</td>
</tr>
<tr>
<td>7.11 Indirect actions</td>
<td>26</td>
</tr>
<tr>
<td>7.12 Structural reliability analysis</td>
<td>27</td>
</tr>
<tr>
<td>8 Actions for pre-service and removal situations</td>
<td>27</td>
</tr>
<tr>
<td>8.1 General</td>
<td>27</td>
</tr>
<tr>
<td>8.2 General requirements</td>
<td>28</td>
</tr>
<tr>
<td>8.3 Actions associated with lifting</td>
<td>30</td>
</tr>
<tr>
<td>8.4 Actions associated with fabrication</td>
<td>33</td>
</tr>
<tr>
<td>8.5 Actions associated with loadout</td>
<td>33</td>
</tr>
<tr>
<td>8.6 Actions associated with transportation</td>
<td>34</td>
</tr>
<tr>
<td>8.7 Actions associated with installation</td>
<td>35</td>
</tr>
<tr>
<td>8.8 Actions associated with removal</td>
<td>36</td>
</tr>
<tr>
<td>9 Actions for in-place situations</td>
<td>36</td>
</tr>
<tr>
<td>9.1 General</td>
<td>36</td>
</tr>
<tr>
<td>9.2 Permanent actions ((G)) and variable actions ((G_v))</td>
<td>36</td>
</tr>
<tr>
<td>9.3 Extreme environmental action due to wind, waves and current</td>
<td>38</td>
</tr>
<tr>
<td>9.4 Extreme quasi-static action due to wind, waves and current ((E_g))</td>
<td>39</td>
</tr>
<tr>
<td>9.5 Extreme quasi-static action caused by waves only ((E_{W-e})) or by waves and currents ((E_{W-c}))</td>
<td>41</td>
</tr>
<tr>
<td>9.6 Actions caused by current</td>
<td>46</td>
</tr>
<tr>
<td>9.7 Actions caused by wind</td>
<td>47</td>
</tr>
</tbody>
</table>
9.8 Equivalent quasi-static action representing dynamic response caused by extreme wave conditions
9.9 Factored actions
9.10 Design situations
9.11 Local hydrodynamic actions
10 Accidental situations
10.1 General
10.2 Vessel collisions
10.3 Dropped objects
10.4 Fires and explosions
10.5 Abnormal environmental actions
11 Seismic design considerations
11.1 General
11.2 Seismic design procedure
11.3 Seismic reserve capacity factor
11.4 Recommendations for ductile design
11.5 ELE requirements
11.6 ALE requirements
11.7 Topsides appurtenances and equipment
12 Structural modelling and analysis
12.1 Purpose of analysis
12.2 Analysis principles
12.3 Modelling
12.4 Analysis requirements
12.5 Types of analysis
12.6 Non-linear analysis
13 Strength of tubular members
13.1 General
13.2 Tubular members subjected to tension, compression, bending, shear or hydrostatic pressure
13.3 Tubular members subjected to combined forces without hydrostatic pressure
13.4 Tubular members subjected to combined forces with hydrostatic pressure
13.5 Effective lengths and moment reduction factors
13.6 Conical transitions
13.7 Dented tubular members
13.8 Corroded tubular members
13.9 Grouted tubular members
14 Strength of tubular joints
14.1 General
14.2 Design considerations
14.3 Simple circular tubular joints
14.4 Overlapping circular tubular joints
14.5 Grouted circular tubular joints
14.6 Ring stiffened circular tubular joints
14.7 Other circular joint types
14.8 Damaged joints
14.9 Noncircular joints
14.10 Cast joints
15 Strength and fatigue resistance of other structural components
15.1 Grouted connections
15.2 Mechanical connections
15.3 Clamps for strengthening and repair
16 Fatigue
16.1 General
16.2 General requirements
16.3 Description of the long-term wave environment
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4</td>
<td>Performing the global stress analyses</td>
<td>161</td>
</tr>
<tr>
<td>16.5</td>
<td>Characterization of the stress range data governing fatigue</td>
<td>164</td>
</tr>
<tr>
<td>16.6</td>
<td>The long-term local stress range history</td>
<td>165</td>
</tr>
<tr>
<td>16.7</td>
<td>Determining the long-term stress range distribution by spectral analysis</td>
<td>167</td>
</tr>
<tr>
<td>16.8</td>
<td>Determining the long-term stress range distribution by deterministic analysis</td>
<td>171</td>
</tr>
<tr>
<td>16.9</td>
<td>Determining the long-term stress range distribution by approximate methods</td>
<td>171</td>
</tr>
<tr>
<td>16.10</td>
<td>Geometrical stress ranges</td>
<td>172</td>
</tr>
<tr>
<td>16.11</td>
<td>Fatigue resistance of the material</td>
<td>174</td>
</tr>
<tr>
<td>16.12</td>
<td>Fatigue assessment</td>
<td>176</td>
</tr>
<tr>
<td>16.13</td>
<td>Other causes of fatigue damage than wave action</td>
<td>177</td>
</tr>
<tr>
<td>16.14</td>
<td>Further design considerations</td>
<td>178</td>
</tr>
<tr>
<td>16.15</td>
<td>Fracture mechanics methods</td>
<td>180</td>
</tr>
<tr>
<td>16.16</td>
<td>Fatigue performance improvement of existing components</td>
<td>181</td>
</tr>
<tr>
<td>17</td>
<td>Foundation design</td>
<td>182</td>
</tr>
<tr>
<td>17.1</td>
<td>General</td>
<td>182</td>
</tr>
<tr>
<td>17.2</td>
<td>Pile foundations</td>
<td>183</td>
</tr>
<tr>
<td>17.3</td>
<td>General requirements for pile design</td>
<td>184</td>
</tr>
<tr>
<td>17.4</td>
<td>Pile capacity for axial compression</td>
<td>185</td>
</tr>
<tr>
<td>17.5</td>
<td>Pile capacity for axial tension</td>
<td>190</td>
</tr>
<tr>
<td>17.6</td>
<td>Axial pile performance</td>
<td>190</td>
</tr>
<tr>
<td>17.7</td>
<td>Soil reaction for piles under axial compression</td>
<td>191</td>
</tr>
<tr>
<td>17.8</td>
<td>Soil reaction for piles under lateral actions</td>
<td>194</td>
</tr>
<tr>
<td>17.9</td>
<td>Pile group behaviour</td>
<td>198</td>
</tr>
<tr>
<td>17.10</td>
<td>Pile wall thickness</td>
<td>199</td>
</tr>
<tr>
<td>17.11</td>
<td>Length of pile sections</td>
<td>201</td>
</tr>
<tr>
<td>17.12</td>
<td>Shallow foundations</td>
<td>202</td>
</tr>
<tr>
<td>18</td>
<td>Corrosion control</td>
<td>203</td>
</tr>
<tr>
<td>18.1</td>
<td>General</td>
<td>203</td>
</tr>
<tr>
<td>18.2</td>
<td>Corrosion zones and environmental parameters affecting corrosivity</td>
<td>203</td>
</tr>
<tr>
<td>18.3</td>
<td>Forms of corrosion, associated corrosion rates and corrosion damage</td>
<td>204</td>
</tr>
<tr>
<td>18.4</td>
<td>Design of corrosion control</td>
<td>204</td>
</tr>
<tr>
<td>18.5</td>
<td>Fabrication and installation of corrosion control</td>
<td>209</td>
</tr>
<tr>
<td>18.6</td>
<td>In-service inspection, monitoring and maintenance of corrosion control</td>
<td>210</td>
</tr>
<tr>
<td>19</td>
<td>Materials</td>
<td>211</td>
</tr>
<tr>
<td>19.1</td>
<td>General</td>
<td>211</td>
</tr>
<tr>
<td>19.2</td>
<td>Design philosophy</td>
<td>212</td>
</tr>
<tr>
<td>19.3</td>
<td>Strength groups</td>
<td>214</td>
</tr>
<tr>
<td>19.4</td>
<td>Toughness classes</td>
<td>214</td>
</tr>
<tr>
<td>19.5</td>
<td>Applicable steels</td>
<td>215</td>
</tr>
<tr>
<td>19.6</td>
<td>Cement grout for pile-to-sleeve connections and grouted repairs</td>
<td>216</td>
</tr>
<tr>
<td>20</td>
<td>Welding, fabrication and weld inspection</td>
<td>217</td>
</tr>
<tr>
<td>20.1</td>
<td>General</td>
<td>217</td>
</tr>
<tr>
<td>20.2</td>
<td>Welding</td>
<td>218</td>
</tr>
<tr>
<td>20.3</td>
<td>Inspection</td>
<td>224</td>
</tr>
<tr>
<td>20.4</td>
<td>Fabrication</td>
<td>225</td>
</tr>
<tr>
<td>21</td>
<td>Quality control, quality assurance and documentation</td>
<td>228</td>
</tr>
<tr>
<td>21.1</td>
<td>General</td>
<td>228</td>
</tr>
<tr>
<td>21.2</td>
<td>Quality management system</td>
<td>228</td>
</tr>
<tr>
<td>21.3</td>
<td>Quality control plan</td>
<td>229</td>
</tr>
<tr>
<td>21.4</td>
<td>Inspection of installation aids and appurtenances</td>
<td>230</td>
</tr>
<tr>
<td>21.5</td>
<td>Inspection of loadout, sea-fastening and transportation</td>
<td>231</td>
</tr>
<tr>
<td>21.6</td>
<td>Installation inspection</td>
<td>231</td>
</tr>
<tr>
<td>21.7</td>
<td>Documentation</td>
<td>232</td>
</tr>
<tr>
<td>21.8</td>
<td>Drawings and specifications</td>
<td>234</td>
</tr>
<tr>
<td>22</td>
<td>Loadout, transportation and installation</td>
<td>234</td>
</tr>
<tr>
<td>22.1</td>
<td>General</td>
<td>234</td>
</tr>
<tr>
<td>22.2</td>
<td>Loadout and transportation</td>
<td>235</td>
</tr>
</tbody>
</table>
ISO 19902:2007(E)

This is a preview of "ISO 19902:2007". Click here to purchase the full version from the ANSI store.

22.3 Transfer of the structure from the transport barge into the water………………………………………... 237
22.4 Placement on the sea floor and assembly of the structure……………………………………………………... 238
22.5 Pile installation……. 240
22.6 Installation of conductors …………………………………………………………………………………………….. 245
22.7 Topsides installation ……………………………………………………………………………………………………… 246
22.8 Grounding of installation welding equipment………..………………………………………………………………… 247

23 In-service inspection and structural integrity management……………………………………………………………... 247
23.1 General…… 247
23.2 Data collection and update …………………………………………………………………………………………… 249
23.3 Evaluation ………... 249
23.4 Inspection strategy …… 251
23.5 Inspection programme …………………………………………………………………………………………………... 253
23.6 Inspection requirements ……………………………………………………………………………………………….. 253
23.7 Default periodic inspection requirements ………………………………………………………………………….. 256
23.8 Personnel qualifications…………………………………………………………………………………………………. 258

24 Assessment of existing structures …………………………………………………………………………………………. 259
24.1 General………... 259
24.2 Assessment process ………………………………………………………………………………………………………... 259
24.3 Data collection……… 262
24.4 Structural assessment initiators ……………………………………………………………………………………… 263
24.5 Acceptance criteria ………………………………………………………………………………………………………... 264
24.6 Structure condition assessment ……………………………………………………………………………………… 265
24.7 Actions assessment ………………………………………………………………………………………………………... 265
24.8 Screening assessment ……………………………………………………………………………………………………… 266
24.9 Resistance assessment…………………………………………………………………………………………………… 266
24.10 Prevention and mitigation ……………………………………………………………………………………………... 269

25 Structure reuse……... 269
25.1 General…… 269
25.2 Fatigue considerations for reused structures ………………………………………………………………………….. 269
25.3 Steel in reused structures …………………………………………………………………………………………………... 269
25.4 Inspection of structures to be reused…………………………………………………………………………………… 270
25.5 Removal and reinstallation …………………………………………………………………………………………………. 271
25.6 In-service inspection and structural integrity management…………………………………………………………... 271

Annex A (informative) Additional information and guidance……………………………………………………………… 272
A.1 Scope ……… 272
A.2 Normative references ……………………………………………………………………………………………………… 272
A.3 Terms and definitions……………………………………………………………………………………………………… 272
A.4 Symbols ………... 272
A.5 Abbreviated terms ………. 272
A.6 Overall considerations ……………………………………………………………………………………………………... 272
A.6.1 Types of fixed steel offshore structure …………………………………………………………………………………... 272
A.6.2 Planning……… 272
A.6.3 Service and operational considerations…………………………………………………………………………………. 272
A.6.4 Safety considerations……………………………………………………………………………………………………. 272
A.6.5 Environmental considerations ……………………………………………………………………………………….. 274
A.6.6 Exposure levels ………... 274
A.6.7 Assessment of existing structures …………………………………………………………………………………….. 276
A.6.8 Structure reuse ……….... 276
A.7 General design requirements ……………………………………………………………………………………………. 276
A.7.1 General……… 276
A.7.2 Incorporating limit states ………………………………………………………………………………………………… 276
A.7.3 Determining design situations ………………………………………………………………………………………. 276
A.7.4 Structural modelling and analysis …………………………………………………………………………………….. 276
A.7.5 Design for pre-service and removal situations ………………………………………………………………………. 276
A.7.6 Design for the in-place situation ………………………………………………………………………………………. 277
A.7.7 Determination of resistances …………………………………………………………………………………………… 277
A.7.8 Strength and stability checks …………………………………………………………………………………………… 282
A.7.9 Robustness ……… 282
A.7.10 Reserve strength	283
A.7.11 Indirect actions	284
A.7.12 Structural reliability analysis	284
A.8 Actions for pre-service and removal situations	284
A.8.1 General	284
A.8.2 General requirements	285
A.8.3 Actions associated with lifting	285
A.8.4 Actions associated with fabrication	287
A.8.5 Actions associated with loadout	287
A.8.6 Actions associated with transportation	287
A.8.7 Actions associated with installation	288
A.8.8 Actions associated with removal	288
A.9 Actions for in-place situations	289
A.9.1 General	289
A.9.2 Permanent actions (G) and variable actions (Q)	289
A.9.3 Extreme environmental action due to wind, waves and current	290
A.9.4 Extreme quasi-static action due to wind, waves and current (Eg)	290
A.9.5 Extreme quasi-static action caused by waves only (Fw) or by waves and currents (FWC)	291
A.9.6 Actions caused by current	305
A.9.7 Actions caused by wind	305
A.9.8 Equivalent quasi-static action representing dynamic response caused by extreme wave conditions	305
A.9.9 Factored actions	310
A.9.10 Design situations	313
A.9.11 Local hydrodynamic actions	314
A.10 Accidental situations	316
A.10.1 General	316
A.10.2 Vessel collisions	316
A.10.3 Dropped objects	317
A.10.4 Fires and explosions	317
A.10.5 Abnormal environmental actions	317
A.11 Seismic design considerations	318
A.11.1 General	318
A.11.2 Seismic design procedure	318
A.11.3 Seismic reserve capacity factor	318
A.11.4 Recommendations for ductile design	318
A.11.5 ELE requirements	318
A.11.6 ALE requirements	318
A.11.7 Topsides appurtenances and equipment	319
A.12 Structural modelling and analysis	319
A.12.1 Purpose of analysis	319
A.12.2 Analysis principles	319
A.12.3 Modelling	320
A.12.4 Analysis requirements	325
A.12.5 Types of analysis	327
A.12.6 Non-linear analysis	330
A.13 Strength of tubular members	332
A.13.1 General	332
A.13.2 Tubular members subjected to tension, compression, bending, shear or hydrostatic pressure	333
A.13.3 Tubular members subjected to combined forces without hydrostatic pressure	342
A.13.4 Tubular members subjected to combined forces with hydrostatic pressure	344
A.13.5 Effective lengths and moment reduction factors	349
A.13.6 Conical transitions	354
A.13.7 Dented tubular members	356
A.13.8 Corroded tubular members	361
A.13.9 Grouted tubular members	361
A.14 Strength of tubular joints	365
A.14.1 General	365
A.14.2 Design considerations	365
Annex E (informative) Welding and weld inspection requirements — Material category approach 568
E.1 General ... 568
E.2 Weld toughness ... 568
E.2.1 Weld metal toughness .. 568
E.2.2 HAZ toughness .. 568
E.3 Inspection .. 570
Annex F (informative) Welding and weld inspection requirements — Design class approach 573
F.1 General ... 573
F.2 Toughness of weld and heat affected zone (HAZ) ... 573
F.2.1 General .. 573
F.2.2 CTOD testing .. 573
F.2.3 PWHT alternative to CTOD testing ... 573
F.3 Extent of NDT for structural welds .. 573
Annex G (normative) Fabrication tolerances ... 576
G.1 Measurements .. 576
G.2 Launch rails .. 576
G.3 Global horizontal tolerances ... 576
G.4 Global vertical tolerances ... 578
G.5 Roundness of tubular members .. 579
G.6 Circumference of tubular members .. 579
G.7 Straightness and circumferential weld locations of tubular members 579
G.8 Joint mismatch for tubular members .. 582
G.9 Leg alignment and straightness tolerances ... 584
G.10 Tubular joint tolerances .. 585
G.11 Cruciform joints .. 587
G.12 Stiffener tolerances .. 588
G.12.1 Stiffener location .. 588
G.12.2 Stiffener cross-section .. 588
G.13 Conductor, pile guide, pile sleeve and appurtenance support tolerances 590
Annex H (informative) Regional information .. 592
H.1 General ... 592
H.2 North West Europe ... 592
H.2.1 Description of region .. 592
H.2.2 Regulatory framework in NW Europe .. 592
H.2.3 Technical information for NW Europe ... 593
H.3 Canada ... 593
H.3.1 Description of region .. 593
H.3.2 Regulatory framework in Canada .. 593
H.3.3 Technical information for Canada .. 594
H.3.4 Additional information and guidance for Canada ... 595
Bibliography ... 597
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19902 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, Subcommittee SC 7, Offshore structures.

This first edition of ISO 19902 cancels and replaces ISO 13819-2:1995, which has been technically revised.

ISO 19902 is one of a series of standards for offshore structures. The full series consists of the following International Standards:

— ISO 19900, Petroleum and natural gas industries — General requirements for offshore structures

— ISO 19901-1, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 1: Metocean design and operating considerations

— ISO 19901-2, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 2: Seismic design procedures and criteria

— ISO 19901-3, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 3: Topsides structure1)

— ISO 19901-4, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 4: Geotechnical and foundation design considerations

— ISO 19901-5, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 5: Weight control during engineering and construction

— ISO 19901-6, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 6: Marine operations2)

— ISO 19901-7, Petroleum and natural gas industries — Specific requirements for offshore structures — Part 7: Stationkeeping systems for floating offshore structures and mobile offshore units

— ISO 19902, Petroleum and natural gas industries — Fixed steel offshore structures

1) Under preparation.
2) To be published.
— ISO 19903, Petroleum and natural gas industries — Fixed concrete offshore structures

— ISO 19904-1, Petroleum and natural gas industries — Floating offshore structures — Part 1: Monohulls, semi-submersibles and spars

— ISO 19904-2, Petroleum and natural gas industries — Floating offshore structures — Part 2: Tension leg platforms\(^3\)

— ISO 19905-1, Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 1: Jack-ups\(^3\)

— ISO/TR 19905-2, Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 2: Jack-ups commentary\(^3\)

— ISO 19906, Petroleum and natural gas industries — Arctic offshore structures\(^3\)

\(^3\) Under preparation.
Introduction

The series of International Standards applicable to types of offshore structure, ISO 19900 to ISO 19906, constitutes a common basis covering those aspects that address design requirements and assessments of all offshore structures used by the petroleum and natural gas industries worldwide. Through their application, the intention is to achieve reliability levels appropriate for manned and unmanned offshore structures, whatever the type of structure and the nature or combination of the materials used.

It is important to recognize that structural integrity is an overall concept comprising models for describing actions, structural analyses, design rules, safety elements, workmanship, quality control procedures and national requirements, all of which are mutually dependent. The modification of one aspect of design in isolation can disturb the balance of reliability inherent in the overall concept or structural system. The implications involved in modifications, therefore, need to be considered in relation to the overall reliability of all offshore structural systems.

The series of International Standards applicable to the various types of offshore structure is intended to provide wide latitude in the choice of structural configurations, materials and techniques without hindering innovation. Sound engineering judgment is therefore necessary in the use of these International Standards.

Annex A provides background to and guidance on the use of this document and needs to be read in conjunction with the main body of this document. The clause numbering in Annex A is the same as in the normative text to facilitate cross-referencing.

Materials, welding and weld inspection requirements can be based either on a “material category” or on a “design class” approach, as discussed in Clauses 19 and 20. If the material category approach is used, the corresponding provisions of Annexes C and E are normative; if the design class approach is used, the corresponding provisions of Annexes D and F are normative.

Annex G gives requirements on fabrication tolerances.

Regional information on the application of the document to certain specific offshore areas is provided in informative Annex H.

To meet certain needs of industry for linking software to specific elements in this International Standard, a special numbering system has been permitted for figures, tables, equations and bibliographic references.
Petroleum and natural gas industries — Fixed steel offshore structures

1 Scope

This International Standard specifies requirements and provides recommendations applicable to the following types of fixed steel offshore structures for the petroleum and natural gas industries:

— caissons, free-standing and braced;
— jackets;
— monotowers;
— towers.

In addition, it is applicable to compliant bottom founded structures, steel gravity structures, jack-ups, other bottom founded structures and other structures related to offshore structures (such as underwater oil storage tanks, bridges and connecting structures), to the extent to which its requirements are relevant.

This International Standard contains requirements for planning and engineering of the following tasks:

a) design, fabrication, transportation and installation of new structures as well as their future removal;

b) in-service inspection and integrity management of both new and existing structures;

c) assessment of existing structures;

d) evaluation of structures for reuse at different locations.

NOTE 1 Specific additional requirements for the design of fixed steel offshore structures in arctic environments are to be contained in ISO 19906[1].

NOTE 2 Requirements for topsides structures are to be contained in ISO 19901-3[2], for marine operations in ISO 19901-6[3] and for the site-specific assessment of jack-ups in ISO 19905-1[4].

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 10414-1, Petroleum and natural gas industries — Field testing of drilling fluids — Part 1: Water-based fluids

ISO 12135, Metallic materials — Unified method of test for the determination of quasistatic fracture toughness

ISO 13702, Petroleum and natural gas industries — Control and mitigation of fires and explosions on offshore production installations — Requirements and guidelines

ISO 19900:2002, Petroleum and natural gas industries — General requirements for offshore structures

© ISO 2007 – All rights reserved 1