Mechanical vibration — Measurement and evaluation of machine vibration —

Part 8: Reciprocating compressor systems

Vibrations mécaniques — Mesurage et évaluation des vibrations des machines —
Partie 8: Systèmes de compresseurs alternatifs
Contents

Foreword .. iv
Introduction ... v
1 Scope .. 1
2 Normative references 1
3 Terms and definitions 2
4 Measurements .. 3
 4.1 Measurement procedure 3
 4.2 Measuring instrumentation and measured quantities .. 3
 4.3 Locations and direction of measurements ... 4
 4.3.1 Locations 4
 4.3.2 Direction of measurements 9
 4.4 Operating conditions 10
 4.5 Record of measured results 10
5 Vibration criteria 10
 5.1 Measuring quantities 10
 5.2 Evaluation zones 10
 5.2.1 General 10
 5.2.2 Acceptance criteria 11
 5.3 Guidance values for acceptable overall vibration values (2 Hz to 1 000 Hz) 12
 5.3.1 Guidance value tables for displacement, velocity and acceleration 12
 5.3.2 Vibration values and the effect of mountings and foundations 13
 5.3.3 Vibration values for horizontal compressors ... 13
 5.3.4 Vibration values for vertical compressors ... 13
Annex A (normative) Measurement information requirements .. 14
Annex B (informative) Curves with overall limits of vibration velocity values 17
Annex C (informative) Measurement of vibration values on the crosshead guide 23
Annex D (informative) Root-mean-square value, peak value and crest factor 26
Annex E (normative) Small bore connections (SBC) .. 28
Bibliography ... 34

© ISO 2018 – All rights reserved
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 108, Mechanical vibration, shock and condition monitoring, Subcommittee SC 2, Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures, in collaboration with ISO/TC 118, Compressors and pneumatic tools, machines and equipment.

This first edition of ISO 20816-8 cancels and replaces ISO 10816-8:2014, which has been technically revised. The main change is the addition of an annex dealing with vibration of small bore connections.

A list of all parts in the ISO 20816 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.
Introduction

ISO 20816-1 gives general guidelines for the evaluation of machine vibration by measurements on both non-rotating parts and rotating shafts. The present document, however, establishes special procedures and guidelines for the measurement and classification of mechanical vibration of reciprocating compressors. Since, in general, it is not common to measure shaft vibration, this document refers to vibration of the main structure of the compressor, including the foundation, pulsation dampers and attached pipe system. The guidance values for these vibrations are defined primarily to classify the vibration and to avoid problems with auxiliary equipment mounted on these structures. Recommendations for measurements and evaluation criteria are provided in this document.

Typical features of reciprocating compressors are the oscillating masses, the cyclically varying torques, cylinder stretch and the pulsating forces in the cylinders, pulsation dampers and the pipe system. All these features cause alternating loads on the main supports and vibration of the compressor system. The vibration values of reciprocating compressor systems are generally larger than for rotating compressors but, since they are largely determined by the design features of the compressor, they tend to remain more constant over the life of the system than for rotating machinery.

In the case of reciprocating compressor systems, the vibration measured on the main structure of the compressor (including the foundation, pulsation dampers and piping) and quantified according to this document can only give a rough idea of the vibratory states of the components within the machine itself.

The damage which can occur when exceeding the guidance values based on experience with similar compressor systems is sustained predominantly by machine-mounted components (e.g. instrumentation, heat exchangers, filters, pumps), connecting elements of the compressor with its peripheral parts (e.g. pipelines) or monitoring instruments (e.g. pressure gauges, thermometers). The question as above which vibration values damage is to be expected largely depends on the design of these components and their fastenings. In some cases, special measurements on certain compressor system components can be required to ascertain that the vibration values do not cause damage. It also happens that, even if measured values are within the guidance values of this document, problems occur owing to the great variety of components which can be attached.

Local vibration problems as described above can be rectified by specific “local measures” (e.g. by elimination of resonances). Experience has shown, however, that it is possible in the majority of cases to state measurable quantities characterizing the vibratory state and to give guidance values for these. This shows that the measurable variables and the guidance values for acceptable vibration in most cases permit a reliable evaluation.

If the measured vibration values as given in this document do not exceed the guidance values, abnormal wear of internal compressor components caused by vibration is unlikely to occur.

The vibration values of reciprocating compressor systems are not only affected by the properties of the compressor itself but also, to a large degree, by the foundation. Since a reciprocating compressor can act as a vibration generator, vibration isolation between the compressor and its foundation can be necessary. The vibration response of the foundation and the vibration from adjacent equipment can have considerable effect on the vibration of the compressor system.