Third edition 2021-08 # Sampling airborne radioactive materials from the stacks and ducts of nuclear facilities Échantillonnage de substances radioactives en suspension dans l'air dans les émissaires de rejet et les conduits des installations nucléaires Reference number ISO 2889:2021(E) #### ISO 2889:2021(E) This is a preview of "ISO 2889:2021". Click here to purchase the full version from the ANSI store. ## **COPYRIGHT PROTECTED DOCUMENT** © ISO 2021 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Contents | | | | | |----------|-----------------------------|--|----------|--| | Fore | eword | | v | | | Intr | oductio | on | vi | | | 1 | Scon | ne | 1 | | | 2 | - | native references | | | | | | | | | | 3 | | ns and definitions | | | | 4 | Sym | bols | 10 | | | 5 | Facto | ors impacting the sampling program | 14 | | | 6 | Sample extraction locations | | | | | | 6.1 | General | | | | | 6.2 | General requirements for sample extraction locations | | | | | 6.3 | Criteria for the homogeneity of the air stream at sampling locations | | | | | | 6.3.1 General | | | | | | 6.3.2 Angular or cyclonic flow | | | | | | 6.3.3 Air velocity profile | | | | | | 6.3.4 Gas concentration profile 6.3.5 Particle concentration profile | | | | | | 6.3.5 Particle concentration profile | 17 | | | | | well-mixed air stream | 17 | | | 7 | Sam | pling system design | 18 | | | • | 7.1 | General | | | | | 7.2 | Volumetric flow measurement | | | | | | 7.2.1 General | | | | | | 7.2.2 Emission stream flow measurement | 18 | | | | | 7.2.3 Sample air flow rate and volume measurement | | | | | | 7.2.4 Leak checks | | | | | 7.3 | Nozzle design and operation for extracting aerosol particles | 20 | | | | | 7.3.1 General | | | | | | 7.3.2 Nozzle performance | | | | | | 7.3.3 Application and performance considerations | | | | | | 7.3.4 Sampling probes with multiple-inlet nozzles | | | | | | 7.3.5 Materials of construction | | | | | | 7.3.6 Maintenance 7.3.7 New concepts | | | | | 7.4 | Sample transport for particles | | | | | 7.1 | 7.4.1 General | | | | | | 7.4.2 Depositional losses | | | | | | 7.4.3 Corrosion | | | | | | 7.4.4 Electrostatic effects and flexible tubes | | | | | | 7.4.5 Smoothness of internal surfaces | 24 | | | | | 7.4.6 Condensation | | | | | | 7.4.7 Cleaning transport lines | | | | | 7.5 | Gas and vapour sample extraction and transport | | | | | 7.6 | Collection of particle samples | | | | | | 7.6.1 General | | | | | 77 | 7.6.2 Filter media | | | | | 7.7 | Collection of gas and vapour samples | | | | | | 7.7.1 General Sampling with retention of specific constituents | | | | | | 7.7.2 Sampling with retention of specific constituents | | | | | 7.8 | Evaluation and upgrading of existing systems | | | | | 7.9 | Summary of performance criteria and recommendations | | | | | | у - г | | | # ISO 2889:2021(E) This is a preview of "ISO 2889:2021". Click here to purchase the full version from the ANSI store. | 8 | Quality assurance and quality control | 29 | |--------|---|-----| | Annex | A (informative) Techniques for measurement of flow rate through a stack or duct | 31 | | Annex | B (informative) Modelling of particle losses in transport systems | 36 | | Annex | C (informative) Special considerations for the extraction, transport and sampling of radioiodine | 46 | | Annex | D (informative) Optimizing the selection of filters for sampling airborne radioactive particles | 50 | | Annex | E (informative) Evaluating the errors and the uncertainty for the sampling of effluent gases | 55 | | Annex | F (informative) Mixing demonstration and sampling system performance verification | 65 | | Annex | G (informative) Transuranic aerosol particulate characteristics —Implications for extractive sampling in nuclear facility effluents | 73 | | Annex | H (informative) Tritium sampling and detection | 77 | | Annex | I (informative) Action levels | 80 | | Annex | J (informative) Quality assurance | 87 | | Annex | K (informative) Carbon-14 sampling and detection | 91 | | Annex | L (informative) Factors impacting sampling system design | 94 | | Annex | M (informative) Sampling nozzles and probes | 100 | | Annex | N (informative) Stack or duct sampling and analysis for 106Ru | 108 | | Biblio | graphy | 109 | ### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 85, *Nuclear energy nuclear technologies and radiological protection*, Subcommittee SC 2, *Radiation protection*. This third edition cancels and replaces the second edition (ISO 2889:2010), which has been technically revised. The main changes are: - clarification of the circumstances where numerical modelling may be used to perform or assist with meeting the qualifications for sample extraction locations; - clarification of passages allowing the use of alternate aerosol particle sizes for the purpose of testing to meet various performance criteria described in this document; - changes for the discussion of standard uncertainty with regard to setting action levels (Annex I). Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ## Introduction This document focuses on monitoring the activity concentrations and activity releases of radioactive substances in air in stacks and ducts. Other situations for monitoring the activity concentrations and activity releases of radioactive substances in air (environmental or workplace monitoring) are being addressed in subsequent standards. This document provides performance-based criteria for the use of air-sampling equipment, including probes, transport lines, sample collectors, sample monitoring instruments and gas flow measuring methods. This document also provides information covering sampling programme objectives, quality assurance, development of air monitoring control action levels, system optimization and system performance verification. ISO 2889 was first published in 1975 as a guide to sampling airborne radioactive materials in the ducts, stacks, and working environments of installations where work with radioactive materials is conducted. Since then, an improved technical basis has been developed for each of the major sampling specialities. The focus of this document is on the sampling of airborne radioactive materials in ducts and stacks. The goal of achieving an unbiased, representative sample is best accomplished where samples are extracted from airstreams in which potential airborne contaminants are well mixed in the airstream. This document sets forth performance criteria and recommendations to assist in obtaining valid measurements of the concentration of airborne radioactive materials in ducts or stacks.