

Second edition 2022-02

Plastics — Measurement of resistivity of conductive plastics

Plastiques — Mesurage de la résistivité des plastiques conducteurs

Reference number ISO 3915:2022(E)

ISO 3915:2022(E)

This is a preview of "ISO 3915:2022". Click here to purchase the full version from the ANSI store.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Cor	ntents	Page
	eword	
Introduction		v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	1
5	Apparatus	1
6	Specimen	3
7	Number of specimens	4
8	Procedure	4
9	Expression of results	4
10	Test report	5
Bibli	liography	6

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 5, *Physical-chemical properties*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 249, *Plastics*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 3915:1981), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the apparatus specifications have been revised;
- the document has been editorially revised.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

0.1 General

The method specified in this document is technically similar to that specified for rubber in ISO 1853.

However, it differs from that method in certain details, especially those associated with the greater stiffness of the plastic samples, and in particular in the limitation on specimen width. It takes into account two problems encountered in the measurement of resistivity of conductive plastics, namely the sensitivity of these materials to their temperature-history and strain-history, and the difficulty of making adequate electrical contact with them.

The prescribed width of the specimen is mandatory for reference purposes; however, a wider strip may be used, with correspondingly wider electrodes. There is a danger in using a wide strip, if the strip is slightly twisted and at the same time somewhat non-uniform in its resistivity. It is then possible to obtain erroneous results; the potential electrode nearer to the positive current electrode can even be found to be negative with respect to the other potential electrode.

0.2 Effect of temperature changes and strain on conductive plastics

As mentioned, the resistance of these materials is sensitive to their temperature-history and strain-history. The relationships are complex and arise from the kinetic energy and structural configuration of the carbon particles in the polymer.

The resistivity may be increased by the effects of strain produced by (or subsequent to) removal from the mould, and a treatment is described for reducing specimens to a constant strain and temperature condition before measurements are carried out on them. Specimens are also cut in two perpendicular directions to assess anisotropy.

0.3 Electrode systems (see 5.3)

Certain types of electrode, when applied to these polymers, have a contact resistance which can be many thousand times greater than the intrinsic resistance of the specimen. Dry contacts under light pressure or point contacts give very high resistances. However, the present test method eliminates the effects of contact resistances unless these are excessively high. (In such a case, no result, rather than a wrong one, is generally obtained.)