Fifth edition 2009-12-01

Photography and graphic technology — Density measurements —

Part 2:

Geometric conditions for transmittance density

Photographie et technologie graphique — Mesurages de la densité — Partie 2: Conditions géométriques pour la densité de transmittance

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Foreword		Page
		iv
		V
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Coordinate system, terminology and symbols	2
5	Distinction between ideal and realized parameters	2
6 6.1 6.2 6.3 6.4 6.5	Requirements for ISO 5 standard diffuse transmittance density Geometric modes Sampling aperture Diffuse distribution Directional distribution Designation	2 3 5
7 7.1 7.2 7.3 7.4	Requirements for ISO 5 standard projection transmittance density	6 6 7
8	Conformance testing	7
Anne	ex A (normative) Diffusion coefficient	8
Anne	ex B (normative) Determining conformance with tolerances	11
Anne	ex C (informative) Unmatched influx and efflux angles	12
Biblio	ography	13

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 5-2 was prepared by ISO/TC 42, *Photography*, and ISO/TC 130 *Graphic technology*, in a Joint Working Group.

This fifth edition cancels and replaces the fourth edition (ISO 5-2:2001), which has been technically revised. This technical revision introduces the concept of ideal and practical conditions. In the course of this technical revision, all parts of ISO 5 have been reviewed together, and the terminology, nomenclature and technical requirements have been made consistent across all parts.

ISO 5 consists of the following parts, under the general title *Photography and graphic technology — Density measurements*:

- Part 1: Geometry and functional notation
- Part 2: Geometric conditions for transmittance density
- Part 3: Spectral conditions
- Part 4: Geometric conditions for reflection density

Introduction

This part of ISO 5 specifies the geometric conditions for transmittance densitometry, primarily (but not exclusively) as practised in black-and-white and colour photography and graphic technology. This part of ISO 5 is intended to specify geometrical conditions for the measurement of optical densities that are close to those used in practice. Diffuse transmittance densities are, among other things, relevant for contact printing and rating films on viewing boxes. Viewing films on light boxes is one of the most important applications where diffuse transmittance densities are relevant. Therefore, the specified conditions for the measurement of diffuse transmittance densities consider the properties of viewing boxes concerning diffusivity and the spectral reflectance factor. Another important application is the measurement of the diffuse transmittance density and hence the opaque area percentage of lithography-type black-and-white films for graphic technology. This part of ISO 5 also describes the geometric conditions for two types of projection density. The spectral conditions are specified in ISO 5-3.

The primary change between the first edition of this part of ISO 5 (published in 1974) and the second edition (published in 1985) was the replacement of the integrating sphere method with a diffuser (typically "opal glass") as the basis for specifying ISO 5 standard diffuse transmittance density. Although any means of diffusion that meets the specifications of this part of ISO 5 can be used, the method is often denoted simply by the words "opal glass" in order to differentiate it from the integrating sphere method. Slightly smaller density values are generally obtained compared to those based on the integrating sphere method because of interreflections between the opal glass and the specimen. The effect is dependent on the reflectance characteristics of the opal glass and the surface of the specimen facing the diffuser.

Diffuse transmittance density is a measure of the modulation of light by a film that is diffusely irradiated on one side and viewed from the other, as when a film is viewed on a diffuse transparency illuminator. The geometric conditions of projection with diffuse illumination are nearly equivalent to the conditions of viewing a film on a diffuse illuminator, the projection lens taking the place of the eye. When film is on a diffuse illuminator or in contact with a print material, light is inter-reflected between the film and the nearby surface. This inter-reflection affects the density and is best taken into account in a measuring instrument by the use of an opal-glass diffuser or integrator, rather than an integrating sphere. Apart from this fundamental reason for using densitometers employing opal-glass diffusers, such instruments are preferred because they are more durable and more convenient to manufacture and use.

Projection density is a measure of the modulation of light by a film that is regularly illuminated on one side and is projected by way of a regular collection system. Equipment employing optical condensers is used to view microfilm, motion pictures, and slides, and to make projection prints. The conditions defined in this part of ISO 5 for projection density simulate the geometric conditions affecting the transmitting characteristics of a small area on a negative or transparency at the centre of the frame of a typical projection system employing condensers. The area under consideration can be defined by a small opening, known as the "sampling aperture", in an otherwise opaque sheet in the frame.

The measured density depends on the half-angle of the cone of incident rays and the half-angle subtended by the projection lens at the sampling aperture. These half-angles can be indicated either in degrees or by f-numbers. Since the f-number is usually marked on projection lenses, the two types of ISO 5 standard projection density specified in this part of ISO 5 are identified by f-numbers, namely f/4,5 and f/1,6. The f/4,5 type is frequently used, since it is representative of microfilm readers. The f/1,6 type is considered representative of motion-picture projectors.

Significant changes from the fourth edition of this part of ISO 5 are explained below.

a) The terminology "transmission density" has been replaced by the term "transmittance density" for both diffuse and projection densities. Both densities require measurements relative to the incident flux (influx), and therefore the regular or diffuse transmittance of the specimen is measured. As explained in ISO 5-1, the correct density term corresponding to regular transmittance is "transmittance density".

ISO 5-2:2009(E)

This is a preview of "ISO 5-2:2009". Click here to purchase the full version from the ANSI store.

b) A distinction is made between ideal and realized parameters for transmittance density. The definition of ISO 5 standard transmittance density is based upon ideal values specified for each parameter. However, actual instruments require reasonable tolerances for physical parameters, which are specified by the realizable parameters.