Fourth edition 2015-03-15

Rubber, vulcanized or thermoplastic — Determination of tendency to adhere to and corrode metals

Caoutchouc, vulcanisé ou thermoplastique — Détermination de la tendance à adhérer aux métaux et à les corroder

Reference number ISO 6505:2015(E)

ISO 6505:2015(E)

This is a preview of "ISO 6505:2015". Click here to purchase the full version from the ANSI store.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents		
Fore	eword	iv
Intro	oduction	v
1	Scope	1
2	Normative references	
3	Principle	
4	Materials	
_		
5	Apparatus	
6	Test metals	
7	Calibration	
8	Test pieces	
	8.1 Preparation	
	8.1.1 Square test pieces 8.1.2 O-ring test pieces	
	8.2 Number	
	8.3 Time-interval between forming the material and testing	
	8.4 Storage	
9	Test conditions	4
	9.1 Temperature	4
	9.2 Test period	
	9.3 Humidity	5
10	Procedure	
	10.1 Precaution	
	10.2 Preparation of rubber test pieces for testing	
	10.3 Number of metal test strips	
	10.5 Determination	
	10.5.1 Tests in a dry atmosphere	
	10.5.2 Tests in a wet atmosphere	
11	Expression of results	7
	11.1 Degree of adhesion	
	11.2 Degree of corrosion	
	11.2.1 For tests in a dry atmosphere	
	11.2.2 For tests in a wet atmosphere	
12	Test report	
Anno	nex A (normative) Calibration schedule	9
Anno	nex B (informative) Grading of degree of corrosion	11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 2, *Testing and analysis*.

This fourth edition cancels and replaces the third edition (ISO 6505:2005), which has been technically revised.

Introduction

In assemblies which include both metallic and rubber components, it is essential to avoid unintentional adhesion of rubber to metal, and corrosion of the metal by the rubber. Adhesion occurs only where there is direct contact between the metal and the rubber, but corrosion can also arise, within a closed system, on metal components remote from the rubber, such corrosion being due to volatile materials emanating from the rubber.

Since some metals corrode more readily than others, it is not possible to specify optimum test conditions for assessing the resistance to corrosion of all metals and alloys. Furthermore, the ranking of a metal's susceptibility to corrosion will depend upon the environment in which it is exposed to the rubber, e.g. in the presence of high humidity the effects on steel, in particular, can be severe.