Third edition 2002-06-01

Protective clothing — Protection against heat and fire — Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat

Vêtements de protection — Protection contre la chaleur et le feu — Méthode d'essai: Évaluation des matériaux et assemblages des matériaux exposés à une source de chaleur radiante

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6942 was prepared by the European Committee for Standardization (CEN) in collaboration with Technical Committee ISO/TC 94, *Personal safety* — *Protective clothing and equipment*, Subcommittee SC 13, *Protective clothing*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

Throughout the text of this document, read "...this European Standard..." to mean "...this International Standard...".

This third edition cancels and replaces the second edition (ISO 6942:1993), which has been technically revised.

Annex A of this International Standard is for information only.

For the purposes of this International Standard, the CEN annex regarding fulfilment of European Directives has been removed.

© ISO 2002 – All rights reserved

Contents Page 1 Scope1 2 Terms and definitions......2 3 Principle2 4.1 4.2 5 5.1 General......3 Source of radiation3 5.2 Specimen holder4 5.3 5.4 Calorimeter4 5.5 Temperature recorder.......6 5.6 Apparatus location6 Sampling7 6 Test conditions7 Conditioning atmosphere7 7.1 7.2 7.3 Heat flux density7 8.1 8.2 Calibration of the radiant source......8 Test A8 8.3 84 Evaluation A9 8.5 Evaluation B9 8.6 Annex A (informative) Precision of method B11

Foreword

This document (ISO 6942:2002) has been prepared by Technical Committee ISO/TC 94 "Personal safety - Protective clothing and equipment" in collaboration with Technical Committee CEN/TC 162 "Protective clothing including hand arm protection and lifejackets", the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2002, and conflicting national standards shall be withdrawn at the latest by December 2002.

This document supersedes EN 366:1993.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

Annex A is informative.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Introduction

Protective clothing against radiant heat is worn at different occasions and accordingly the radiation intensity (characterised by the heat flux density) acting on the clothing material extends over a wide range. This European Standard describes two test methods which can be applied to all sorts of materials, but, according to the intended use of the material, the heat flux density has to be chosen properly and the results have to be interpreted correctly,

Industrial workers or fire fighters may be exposed to a relatively low radiation intensity over a long period of time. On the other hand, industrial workers or fire fighters may be exposed to medium radiation intensities for relatively short periods of time or to high radiation intensities for very short periods of time. In the latter case, the clothing material may be changed or even destroyed.

The materials for the protective clothing should be tested at medium and high heat flux densities. The reaction on method A and the times t_{12} and t_{24} and transmission factor measured with method B characterise the material. Information of the precision of method B see annex A.