

Second edition 2021-12

Coating powders —

Part 4:

Calculation of lower explosion limit

Poudres pour revêtement — Partie 4: Calcul de la limite inférieure d'explosivité

ISO 8130-4:2021(E)

This is a preview of "ISO 8130-4:2021". Click here to purchase the full version from the ANSI store.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword		Page
		v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	1
5	Sampling	2
6	Determination of gross calorific value	2
7	Calculation of the lower explosion limit	2
8	Test report	3
Bibl	lingranhy	4

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*, Subcommittee SC 9, *General test methods for paints and vanishes*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 139, *Paints and varnishes*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 8130-4:1992) and ISO 8130-4 Technical Corrigendum 1:1993, which have been technically revised.

The main changes are as follows:

- the scope has been modified to differentiate between calculation and an estimation of the lower explosion limit;
- the definition on lower explosion limit (3.1) has been clarified for coating powders and the short term LEL has been introduced;
- the SI unit for the lower explosion limit has been corrected;
- the test report (<u>Clause 8</u>) shall note whether the lower explosion limit was calculated or estimated;
- the bibliography contains two new references;
- the text has been editorially revised and the normative references have been updated;
- some text has been moved from the scope to the introduction.

A list of all parts in the ISO 8130 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Reliable methods for the measurement of the lower explosion limit or the gross calorific value require the use of special apparatus which may not be readily available.

A method for determining the explosion indices of combustible dusts in air is given in ISO 6184-1. This method is, however, very intricate and requires considerable expertise.

The lower explosion limit can also be estimated by summation of the gross calorific value of the individual constituents of the coating powder. It is an estimation since it is not possible to know or obtain the gross calorific value of the constituent.

The calculation method leads to lower explosion limits which have been proved in practice to be satisfactory when applied to coating application plants.

NOTE A comparison with a direct method e.g. EN 14034-3[2] for determining the lower explosion limit is encouraged.