Mechanical properties of fasteners made of carbon steel and alloy steel

Part 1:
Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread

Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié

Partie 1: Vis, goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
Contents

Foreword .. iv

1 Scope .. 1

2 Normative references .. 2

3 Terms and definitions .. 3

4 Symbols and abbreviated terms ... 4

5 Designation system for property classes .. 6

6 Materials .. 6

7 Mechanical and physical properties .. 8

8 Applicability of test methods .. 12

 8.1 General .. 12

 8.2 Loadability of fasteners .. 12

 8.3 Manufacturer's test/inspection ... 13

 8.4 Supplier's test/inspection ... 13

 8.5 Purchaser's test/inspection .. 13

 8.6 Feasible tests for groups of fasteners and machined test pieces .. 14

9 Test methods .. 12

 9.1 Tensile test under wedge loading of finished bolts and screws (excluding studs) 21

 9.2 Tensile test for finished bolts, screws and studs for determination of tensile strength, R_m 25

 9.3 Tensile test for full-size bolts, screws and studs for determination of elongation after fracture, $A_{0.2}$ and stress at $0.0048d$, non-proportional elongation, R_{df} .. 27

 9.4 Tensile test for bolts and screws with reduced loadability due to head design 31

 9.5 Tensile test for fasteners with waisted shank .. 32

 9.6 Proof load test for finished bolts, screws and studs ... 33

 9.7 Tensile test for machined test pieces .. 35

 9.8 Head soundness test ... 38

 9.9 Hardness test ... 39

 9.10 Decarburization test .. 41

 9.11 Carburization test ... 44

 9.12 Retempering test .. 46

 9.13 Torsional test ... 46

 9.14 Impact test for machined test pieces .. 47

 9.15 Surface discontinuity inspection .. 48

10 Marking .. 48

 10.1 General ... 48

 10.2 Manufacturer's identification mark ... 49

 10.3 Marking and identification of fasteners with full loadability .. 49

 10.4 Marking and designation of fasteners with reduced loadability .. 53

 10.5 Marking of packages ... 53

Annex A (informative) Relationship between tensile strength and elongation after fracture 54

Annex B (informative) Influence of elevated temperatures on mechanical properties of fasteners 55

Annex C (informative) Elongation after fracture for full-size fasteners, $A_{0.2}$ 56

Bibliography ... 57
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 898-1 was prepared by Technical Committee ISO/TC 2, Fasteners, Subcommittee SC 11, Fasteners with metric external thread.

This fifth edition cancels and replaces the fourth edition (ISO 898-1:2009), of which it constitutes a minor revision.

ISO 898 consists of the following parts, under the general title Mechanical properties of fasteners made of carbon steel and alloy steel:

— Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread
— Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread
— Part 5: Set screws and similar threaded fasteners with specified hardness classes — Coarse thread and fine pitch thread
— Part 7: Torsional test and minimum torques for bolts and screws with nominal diameters 1 mm to 10 mm

1) It is intended that, upon revision, the main element of the title of Part 7 will be aligned with the main element of the titles of Parts 1 to 5.