Second edition 2000-01-15

Plastics — Determination of the brittleness temperature by impact

Plastiques — Détermination de la température de fragilité au choc

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Contents

1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	2
5	Apparatus	2
6	Test specimens	3
7	Conditioning	5
8	Procedure	5
9 9.1 9.2	Expression of results	6 6
10	Test report	7

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 974 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 2, *Mechanical properties*.

This second edition cancels and replaces the first edition (ISO 974:1980), which has been technically revised.

Introduction

Plastics are used in many applications requiring low-temperature flexing with or without impact. Polymer brittleness is affected by any orientation produced during fabrication, by thermal history and by the application of stress to the material, especially the rate of applied stress as in impact. Brittleness temperature data may be used to predict the behaviour of plastic materials at low temperature only in applications in which the conditions of deformation are similar. The brittleness temperature test was originally developed to measure the temperature at which a polymer ceases to be flexible and becomes "glasslike".

© ISO 2000 – All rights reserved