STANDARD

51649

Second edition 2005-05-15

Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV

Pratique de la dosimétrie dans une installation de traitement par irradiation utilisant un faisceau d'électrons d'énergies comprises entre 300 keV et 25 MeV

© ISO/ASTM International 2005

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central Secretariat nor ASTM International accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies and ASTM members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or ASTM International at the addresses given below.

© ISO/ASTM International 2005

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. In the United States, such requests should be sent to ASTM International.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. +41 22 749 01 11 Fax +41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA Tel. +610 832 9634 Fax +610 832 9635 E-mail khooper@astm.org Web www.astm.org

Published in the United States

Contents

1	Scope	1
2	Referenced documents	1
3	Terminology	2
4	Significance and use	5
5	Radiation source characteristics	6
6	Types of irradiation facilities	6
7	Dosimetry systems	6
8	Process parameters	7
9	Installation qualification	7
1(Operational qualification	8
11	Performance qualification	9
12	P Routine product processing	11
12	Measurement uncertainty	12
12		12
1/	Kayworde	12
Λ	neywords	12
	illiezes	20
	surged. Example pulse surrent (I) successes been surrent (I) pulse width (M) and	29
Г	gure i Example pulse current (I _{pulse}), average beam current (I _{avg}), pulse width (vv) and	•
re	petition rate (1) for a pulsed accelerator	2
FI	gure 2 Diagram showing beam length and width for a scanned beam using a conveyor	•
S		3
FI	gure 3 Example of electron-beam dose distribution along the beam width with the width noted	-
at	some defined fractional level f of the average maximum dose D _{max}	3
Fi	gure 4 A typical depth-dose distribution for an electron beam in a homogeneous material	4
Fi	gure 5 Typical pulse current waveform from an S-Band linear accelerator	5
Fi	gure A1.1 Calculated depth-dose distribution curves in various homogeneous polymers for	
no	ormally incident monoenergetic electrons at 5.0 MeV using the Program ITS3	13
Fi	gure A1.2 Calculated depth-dose distribution curves in various homogeneous metals for	
no	prmally incident monoenergetic electrons at 5.0 MeV using the Program ITS3	14
Fi	gure A1.3 Calculated depth-dose distribution curves in polystyrene for normally incident	
el	ectrons at monoenergetic energies from 300 to 1000 keV using the Program ITS3	15
Fi	gure A1.4 Calculated depth-dose distribution curves in polystyrene for normally incident, plane	
pa	arallel incident electrons at monoenergetic energies from 1.0 to 5.0 MeV using the program ITS3	
۰.		16
Fi	gure A1.5 Calculated depth-dose distribution curves in polystyrene for normally incident, plane	-
Da	arallel incident electrons at monoenergetic energies from 5.0 to 12.0 MeV using the program	
IT	S3	17
Fi	curre A1.6 Calculated depth-dose distribution curves in AI and Ta for normally incident plane	
na	gale And Calculated depth door distribution curves in an and ratio normally incident, plane	18
F	aure A1.7 Electron energy denosition D (0) at the entrance surface of a polystyrane absorber	10
20	s a function of incident electron energy from 0.3 MeV to 12 MeV corresponding to the Monto	
a:	and calculated data shown in Figs. A1.2-A1.5	10
E	and calculated data shown in Figs. A1.5-A1.5	10
	guie And Liection energy deposition $D_{e}(0)$ at the entrance surface of a polystyleffe absolute to a function of incident electron energy from 0.2 MeV to 2.0 MeV corresponding to the Mante	
a	a randiant of moldenic electron energy from 0.5 wev to 2.0 wev corresponding to the Monte	10
	and calculated udia Showin III Fly. A1.5 and Fly. A1.4	19
	gure AI.9 Superposition of theoretically calculated depth-dose distribution curves for aluminum	

irradiated with 5 MeV monoenergetic electrons from both sides with different thicknesses (T) and	
from one side using experimental data presented in Refs (12 and 25)	19
Figure A1.10 Calculated correlations between optimum electron range R_{opt} , half-value depth R_{50} ,	
half-entrance depth R_{50e} , and practical range R_p , and incident electron energy for polystyrene	
using Fig. A1.3 and Fig. A1.4	20
Figure A1.11 Calculated correlations between optimum electron range R_{opt} , half-value depth R_{50} ,	
half-entrance depth R_{50e} , and practical range R_p , and incident electron energy for polystyrene	
using Figs. A1.4 and A1.5	20
Figure A1.12 Measured depth-dose distribution curves for nominal 10 MeV electron beams	
incident on polystyrene for two electron beam facilities	21
Figure A1.13 Depth-dose distribution curves in stacks of cellulose acetate films backed with	
wood, aluminum, and iron for incident electrons with 400 keV energy	22
Figure A1.14 Depth-dose distributions with 2 MeV electrons incident on polystyrene absorbers at	
various angles from the normal direction	22
Figure A3.1 Measured depth-dose distribution curve in aluminum for a 10 MeV electron beam in	
comparison with the calculated relative depth-dose distribition using ITS3	25
Figure A3.2 Stack energy measurement device	26
Figure A3.3 Wedge energy measurement device	27
Table A1.1 Key parameters for measured depth-dose distribution curves presented in Fig. A1.12	21
Table A1.2 Electron energy deposition $D_e(0)$ at the entrance surface of a polystyrene absorber as	
a function of incident electron energy from 0.3 MeV to 12 MeV corresponding to the calculated	
curves shown in Figs. A1.3-A1.5	21
Table A1.3 Compatible units for the quantities used in Eq A1.1	22
Table A3.1 Some relevant properties of common reference materials	24
Table A3.2 Half-value depth R_{50} , half-entrance depth R_{50e} , optimum thickness R_{opt} and practical	
range R _p in polystyrene for monoenergetic electron energies E from 0.3 to 12 MeV derived from	
Monte Carlo calculations	24
Table A3.3 Half-value depth R_{50} , practical range R_p and extrapolated range R_{ex} in aluminum for	
monoenergetic electron energies E from 2.5 to 25 MeV derived from Monte Carlo calculations	25

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

ASTM International is one of the world's largest voluntary standards development organizations with global participation from affected stakeholders. ASTM technical committees follow rigorous due process balloting procedures.

A project between ISO and ASTM International has been formed to develop and maintain a group of ISO/ASTM radiation processing dosimetry standards. Under this project, ASTM Subcommittee E10.01, Dosimetry for Radiation Processing, is responsible for the development and maintenance of these dosimetry standards with unrestricted participation and input from appropriate ISO member bodies.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. Neither ISO nor ASTM International shall be held responsible for identifying any or all such patent rights.

International Standard ISO/ASTM 51649 was developed by ASTM Committee E10, Nuclear Technology and Applications, through Subcommittee E10.01, and by Technical Committee ISO/TC 85, Nuclear energy.

This second edition cancels and replaces the first edition (ISO/ASTM 51649:2002), which has been technically revised.