Second edition 2014-11-15

Impact of changes in ISO fluid power particle counting — Contamination control and filter test standards

Conséquences des changements survenus dans les normes ISO relatives au comptage des particules — Contrôle de la contamination et essais de filtres

COPYRIGHT PROTECTED DOCUMENT

© ISO 2014

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents		Page
Fore	eword	iv
Introduction		v
1	Scope	
2	Historical background2.1What is ACFTD?2.2Calibrating particle counters using ACFTD2.3The original multi-pass filter test	
3	New test dusts	2
4	New APC calibration procedure	
5	Why changes were necessary	
6	Impact on particle sizes and contamination measurements6.1Redefinition of particle sizes6.2Apparent particle concentrations6.3Contamination code reporting	
7	Impact on filter test results7.1Filter retained contaminant capacity7.2Filtration ratio and filter efficiency	
8	Conclusion	
Bibliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword — Supplementary information.

The committee responsible for this document is ISO/TC 131, *Fluid power systems*, Subcommittee SC 6, *Contamination control*.

This second edition cancels and replaces the first edition (ISO/TR 16386:1999) which has been technically revised.

Introduction

This Technical Report has been prepared as an information document to give users an understanding into the background and implications of a number of new and revised contamination control standards, namely ISO 11171, ISO 11943, ISO 16889 and ISO 4406.

The adoption of four revised and updated contamination control standards, ISO 11171, ISO 11943, ISO 16889, and ISO 4406:1999, has produced significant changes in terms of how solid contamination levels and filter performance are reported.

With ISO 11171, the method of calibrating automatic particle counters (APCs) using AC Fine Test Dust (ACFTD) used since the early 1970s has been replaced by a new method traceable to the USA's National Institute of Standards and Technology. As a result, contaminant particle sizes previously referred to as 2 μ m, 5 μ m, 10 μ m, and 15 μ m became 4 μ m(c), 6 μ m(c), 10 μ m(c), and 14 μ m(c), respectively, where (c) refers to particle sizing and counting done with an APC calibrated in accordance with ISO 11171.

ISO 11943 is a new standard for calibrating online particle counting systems that are primarily used to evaluate filter performance. With the ISO 16889 filter multi-pass test, which replaces the original ISO 4572 method, ISO Medium Test Dust (ISO MTD) replaces ACFTD as the test dust and the new ISO 11171 traceable particle counter calibration method is used. In ISO 4406:1999, the new calibration method is used, and a new 4 μ m(c) size class has been added to the solid contamination code for particle counts made with an automatic particle counter.

These improvements in particle counting and filter testing have a significant impact on contamination control activities. However, it is important to note that there has been no change in the actual contamination levels or in the performance of filters, or their effectiveness in protecting the reliability of components. This Technical Report discusses what the changes are, why they were made, how they impact contamination levels and filter ratings, and how they benefit the industry.