Cutting tool data representation and exchange —
Part 2: Reference dictionary for the cutting items

Représentation et échange des données relatives aux outils coupants —
Partie 2: Dictionnaire de référence pour les éléments coupants
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>2</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Abbreviated terms</td>
<td>5</td>
</tr>
<tr>
<td>5 Representation of the ontological concepts as dictionary entries</td>
<td>5</td>
</tr>
<tr>
<td>5.1 General</td>
<td>5</td>
</tr>
<tr>
<td>5.2 cutting_item_feature</td>
<td>5</td>
</tr>
<tr>
<td>5.3 cutting_item_type</td>
<td>7</td>
</tr>
<tr>
<td>5.4 Reference systems for cutting items</td>
<td>9</td>
</tr>
<tr>
<td>6 Properties for cutting item features and cutting item types</td>
<td>10</td>
</tr>
<tr>
<td>Annex A (normative) Information object registration</td>
<td>13</td>
</tr>
<tr>
<td>Annex B (informative) Classification tables</td>
<td>14</td>
</tr>
<tr>
<td>Annex C (informative) Class definitions</td>
<td>16</td>
</tr>
<tr>
<td>Annex D (informative) Cutting item property definitions</td>
<td>34</td>
</tr>
<tr>
<td>Annex E (informative) Illustrations of properties</td>
<td>79</td>
</tr>
<tr>
<td>Annex F (informative) Illustrations of irregular insert profiles and properties</td>
<td>90</td>
</tr>
<tr>
<td>Annex G (informative) Illustrations of reference positions for cutting items</td>
<td>99</td>
</tr>
<tr>
<td>Bibliography</td>
<td>104</td>
</tr>
</tbody>
</table>
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO’s adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/TC 29, Small tools.

This second edition cancels and replaces the first edition (ISO/TS 13399-2:2005), which has been technically revised.

ISO 13399 consists of the following parts, under the general title Cutting tool data representation and exchange:

- Part 1: Overview, fundamental principles and general information model
- Part 2: Reference dictionary for cutting items [Technical Specification]
- Part 4: Reference dictionary for adaptive items [Technical Specification]
- Part 5: Reference dictionary for accessory and auxiliary items [Technical Specification]
- Part 60: Reference dictionary for connection systems [Technical Specification]
- Part 100: Definitions, principles and methods for reference dictionaries [Technical Specification]
- Part 150: Usage guidelines [Technical Specification]
- Part 301: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of thread-cutting taps, thread-forming taps and thread-cutting dies [Technical Specification]
- Part 302: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of solid drills and countersinking tools [Technical Specification]

The following parts are under preparation:
- Part 51: Designation system for customer solution cutting tools
— Part 80: Concept for the design of 3D models based on properties according to ISO 13399: Overview and principles [Technical Specification]

— Part 201: Concept for the design of 3D models based on properties according to ISO/TS 13399-2: Modelling of regular inserts [Technical Specification]

— Part 202: Concept for the design of 3D models based on properties according to ISO/TS 13399-2: Modelling of irregular inserts [Technical Specification]

— Part 203: Concept for the design of 3D models based on properties according to ISO/TS 13399-2: Modelling of exchangeable inserts for drilling [Technical Specification]

— Part 204: Concept for the design of 3D models based on properties according to ISO/TS 13399-2: Modelling of inserts for reaming [Technical Specification]

— Part 303: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of end mills with non-indexable cutting edges [Technical Specification]

— Part 304: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of milling cutters with arbor hole and non-indexable cutting edges [Technical Specification]

— Part 307: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of end mills for indexable inserts [Technical Specification]

— Part 308: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of milling cutter with arbor hole for indexable inserts [Technical Specification]

— Part 309: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Tool holders for indexable inserts [Technical Specification]

— Part 311: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of solid reamers [Technical Specification]

— Part 312: Concept for the design of 3D models based on properties according to ISO/TS 13399-3: Modelling of reamers for indexable inserts [Technical Specification]

— Part 401: Concept for the design of 3D models based on properties according to ISO/TS 13399-4: Modelling of converting, extending and reducing adaptive items [Technical Specification]

— Part 405: Concept for the design of 3D models based on properties according to ISO/TS 13399-4: Modelling of collets [Technical Specification]
Introduction

This part of ISO 13399 defines the terms, properties, and definitions for those portions of a cutting tool that remove material from a workpiece. Cutting items include replaceable inserts, brazed tips, and the cutting portions of solid cutting tools. The purpose of this part of ISO 13399 is to provide a reference dictionary to support the use of the general information model defined in ISO 13399-1.

A cutting tool with defined cutting edges is used on a machine to remove material from a workpiece by a shearing action at the cutting edges of the tool. Cutting tool data that can be described by ISO 13399 (all parts) include, but are not limited to, everything between the workpiece and the machine tool. Information about inserts (e.g. regular and irregular shaped replaceable cutting items), solid tools (e.g. solid drill and solid endmill), assembled tools (e.g. boring bars, indexable drills and indexable milling cutters), adaptors (e.g. milling arbor and drilling chuck), components (e.g. shims, screws and clamps) and their relationships can be represented by ISO 13399 (all parts). Possible assemblies of the components of a cutting tool are illustrated in Figure 1.

The objective of ISO 13399 (all parts) is to provide the means to represent the information that describes cutting tools in a computer-sensible form that is independent from any particular computer system. The representation will facilitate the processing and exchange of cutting tool data within and between different software systems and computer platforms and support the application of this data in manufacturing planning, cutting operations, and the supply of tools. The nature of this description makes it suitable not only for neutral file exchange but also as a basis for implementing and sharing product databases and for archiving. The methods used for these representations are those developed by ISO/TC 184/SC 4 for the representation of product data by using standardized information models and reference dictionaries.

An information model is a formal specification of types of ideas, facts, and processes which together describe a portion of interest of the real world and which provides an explicit set of interpretation rules. Information is knowledge of ideas, facts, and/or processes. Data are symbols or functions that represent information for processing purposes. Data are interpreted to extract information by using rules for how that should be done and a dictionary to define the terms that identify the data. Everyone in a communication process is expected to use the same information model, the same set of explicit rules and the same dictionary in order to avoid misunderstanding. If an information model and its dictionary are written in a computer-sensible language, then there is the additional benefit that they can be computer processable.

An engineering information model is therefore a specification for data that establishes the meaning of that data in a particular engineering context. A model has to be developed by formal methods to ensure that it meets the needs of the situation that it represents. An engineering information model defines the information objects that represent the concepts in an engineering application, the attributes of the objects, their relationships, and the constraints that add further meaning. An information model is an abstract concept that can be used repeatedly for any example of the real-world situation that it represents. An instance of the model is produced when it is populated with the data items and their values that are applicable to a particular example of that situation.

This part of ISO 13399 uses the following International Standards developed by ISO/TC 184/SC 4:

— the EXPRESS language defined in ISO 10303-11 for defining the information model in ISO 13399-1;
— the file format for data exchange derived from the model and defined in ISO 10303-21;
— the data dictionary defined in the ISO 13584 series.

The ISO 13399 series is intended for use by, among others, tool producers and vendors, manufacturers, and developers of manufacturing software. ISO 13399 provides a common structure for exchanging data about cutting tools with defined cutting edges. ISO 13399 is intended to provide for, or improve, several manufacturing activities, including

— the integration and sharing of data for cutting tools and assemblies between different stages for the manufacturing cycle and between different software applications,
— the direct import of data from cutting tool suppliers into a customer’s database, and
— the management of cutting tool information from multiple sources and for multiple applications.

Different companies use different business models that determine their need for the communication of information about their products. For example, one cutting tool manufacturer could regrind its customers’ tools while another could allow its customers to do the regrinding and provide the information to enable them to do so. Therefore, the two cutting tool manufacturers could have a different set of cutting tool properties to communicate using the information model and dictionaries provided in ISO 13399.

ISO 13399 defines only the information that could be communicated, but does not specify what information shall be communicated.

Figure 1 — Possible assemblies of components of a cutting tool

Since the content of those dictionaries evolves according to industrial innovations and constant improvement of technology in cutting tools, a Maintenance Agency has been established for the purposes of
— correcting errors in the entries of existing classes and properties,
— adding new properties to existing classes,
— adding new classes and their properties,
— managing the status of those properties and classes, and
— migrating the dictionary to subsequent editions of ISO 13399 (all parts).

The secretariat of this Maintenance Agency has been assigned to:

Union de Normalisation de la Mécanique
F-92038 Paris La Défense CEDEX
France
by the ISO Technical Management Board.

The website of the Maintenance Agency is available at: http://www.unm.fr/main/core.php?pag_id=135

The reference dictionaries are available in the form of EXPRESS files on the website of the Maintenance Agency. These files are considered complementary to this part of ISO 13399; they can be freely downloaded and used for cutting tool data representation and exchange.

The following permission notice and disclaimer shall be included in all copies of this EXPRESS schema ("the Schema"), and derivations of the Schema:

© ISO 2014 – All rights reserved

Permission is hereby granted, free of charge in perpetuity, to any person obtaining a copy of the Schema, to use, copy, modify, merge and distribute free of charge, copies of the Schema for the purposes of developing, implementing, installing and using software based on the Schema, and to permit persons to whom the Schema is furnished to do so, subject to the following conditions:

THE SCHEMA IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL ISO, OR ANY OTHER LICENSOR THAT GRANTS THE RIGHT UNDER THE ABOVE PERMISSION TO USE THE SCHEMA, BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SCHEMA OR THE USE OR OTHER DEALINGS IN THE SCHEMA.

In addition, any modified copy of the Schema shall include the following notice:

THIS SCHEMA HAS BEEN MODIFIED FROM THE SCHEMA DEFINED IN ISO 13399, AND SHOULD NOT BE INTERPRETED AS COMPLYING WITH THAT INTERNATIONAL STANDARD.