Intelligent transport systems — Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) — Part 24:
Light encryption (TPEG2-LTE)

Systèmes intelligents de transport — Informations sur le trafic et le tourisme via le groupe expert du protocole de transport, génération 2 (TPEG2) —
Partie 24: Cryptage léger (TPEG2-LTE)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Abbreviated terms</td>
<td>3</td>
</tr>
<tr>
<td>5 Light Encryption specific constraints</td>
<td>4</td>
</tr>
<tr>
<td>5.1 Version number signalling</td>
<td>4</td>
</tr>
<tr>
<td>5.2 Extendibility</td>
<td>4</td>
</tr>
<tr>
<td>5.3 Endianness</td>
<td>4</td>
</tr>
<tr>
<td>5.4 Supported business models</td>
<td>4</td>
</tr>
<tr>
<td>5.5 Performance requirements</td>
<td>4</td>
</tr>
<tr>
<td>5.5.1 Repetition rate of light encryption parameters</td>
<td>5</td>
</tr>
<tr>
<td>5.5.2 Update rate of light encryption parameters</td>
<td>5</td>
</tr>
<tr>
<td>5.6 License agreement and security requirements</td>
<td>5</td>
</tr>
<tr>
<td>5.6.1 General</td>
<td>5</td>
</tr>
<tr>
<td>5.6.2 Security requirements on service providers</td>
<td>6</td>
</tr>
<tr>
<td>5.6.3 Security requirements on client manufacturers</td>
<td>6</td>
</tr>
<tr>
<td>6 Light encryption method of encryption and operation</td>
<td>6</td>
</tr>
<tr>
<td>6.1 Principles of operation for light encryption</td>
<td>6</td>
</tr>
<tr>
<td>6.2 Overview of the light encryption method</td>
<td>7</td>
</tr>
<tr>
<td>6.2.1 General</td>
<td>7</td>
</tr>
<tr>
<td>6.2.2 TISA secret KeyTable and TISAParameterInConfidence</td>
<td>8</td>
</tr>
<tr>
<td>6.3 Encryption and decryption of service data frame payload data</td>
<td>9</td>
</tr>
<tr>
<td>6.3.1 General</td>
<td>9</td>
</tr>
<tr>
<td>6.3.2 Block cipher mode of operation</td>
<td>9</td>
</tr>
<tr>
<td>6.3.3 Initialisation Vector</td>
<td>11</td>
</tr>
<tr>
<td>6.4 Encryption and decryption of transmitted Control Words</td>
<td>11</td>
</tr>
<tr>
<td>6.5 Service Key composition</td>
<td>12</td>
</tr>
<tr>
<td>6.5.1 General</td>
<td>12</td>
</tr>
<tr>
<td>6.5.2 Light Encryption modes 1 and 2 common parameters for Service Key composition</td>
<td>13</td>
</tr>
<tr>
<td>6.5.3 Light Encryption Mode 1 specific parameters for Service Key composition</td>
<td>14</td>
</tr>
<tr>
<td>6.5.4 Light Encryption Mode 2 specific parameters for Service Key composition</td>
<td>14</td>
</tr>
<tr>
<td>6.5.5 Example Service Key Composition</td>
<td>14</td>
</tr>
<tr>
<td>7 Light Encryption structure and embedding in TPEG service data frames</td>
<td>16</td>
</tr>
<tr>
<td>7.1 General</td>
<td>16</td>
</tr>
<tr>
<td>7.2 Light encryption embedding in TPEG service data frames</td>
<td>16</td>
</tr>
<tr>
<td>7.3 Light Encryption components</td>
<td>16</td>
</tr>
<tr>
<td>7.4 LTE tables</td>
<td>18</td>
</tr>
<tr>
<td>7.5 Initialisation Vector composition</td>
<td>18</td>
</tr>
<tr>
<td>7.6 Service Key composition</td>
<td>18</td>
</tr>
<tr>
<td>8 LTE components</td>
<td>19</td>
</tr>
<tr>
<td>8.1 LteInformation</td>
<td>19</td>
</tr>
<tr>
<td>8.2 LteParameters</td>
<td>19</td>
</tr>
<tr>
<td>8.3 LteMode1Parameters</td>
<td>20</td>
</tr>
<tr>
<td>8.4 LteMode2Parameters</td>
<td>20</td>
</tr>
<tr>
<td>8.5 Mode1EMMessage</td>
<td>21</td>
</tr>
<tr>
<td>8.6 Mode2EMMessage</td>
<td>21</td>
</tr>
<tr>
<td>9 LTE Datatypes</td>
<td>22</td>
</tr>
<tr>
<td>9.1 ControlWord</td>
<td>22</td>
</tr>
</tbody>
</table>

© ISO 2017 – All rights reserved
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the following URL: http://www.iso.org/iso/foreword.html

The committee responsible for this document is ISO/TC 204, Intelligent transport systems.

A list of all the parts in the ISO 21219 series can be found on the ISO website.
Introduction

History

TPEG technology was originally proposed by the European Broadcasting Union (EBU) Broadcast Management Committee, who established the B/TPEG project group in the autumn of 1997 with a brief to develop, as soon as possible, a new protocol for broadcasting traffic and travel-related information in the multimedia environment. TPEG technology, its applications and service features were designed to enable travel-related messages to be coded, decoded, filtered and understood by humans (visually and/or audibly in the user's language) and by agent systems. Originally, a byte-oriented data stream format, which may be carried on almost any digital bearer with an appropriate adaptation layer, was developed. Hierarchically structured TPEG messages from service providers to end-users were designed to transfer information from the service provider database to an end-user's equipment.

One year later, in December 1998, the B/TPEG group produced its first EBU specifications. Two documents were released. Part 2 (TPEG-SSF, which became ISO/TS 18234-2) described the Syntax, Semantics and Framing structure, which was used for all TPEG applications. Meanwhile, Part 4 (TPEG-RTM, which became ISO/TS 18234-4) described the first application for Road Traffic Messages.

Subsequently, in March 1999, CEN/TC 278, in conjunction with ISO/TC 204, established a group comprising members of the former EBU B/TPEG and this working group continued development work. Further parts were developed to make the initial set of four parts enabling the implementation of a consistent service. Part 3 (TPEG-SNI, ISO/TS 18234-3) described the Service and Network Information Application used by all service implementations to ensure appropriate referencing from one service source to another.

Part 1 (TPEG-INV, ISO/TS 18234-1) completed the series by describing the other parts and their relationship; it also contained the application IDs used within the other parts. Additionally, Part 5, the Public Transport Information Application (TPEG-PTI, ISO/TS 18234-5), was developed. The so-called TPEG-LOC location referencing method, which enabled both map-based TPEG-decoders and non-map-based ones to deliver either map-based location referencing or human readable text information, was issued as ISO/TS 18234-6 to be used in association with the other applications parts of the ISO/TS 18234 series to provide location referencing.

The ISO/TS 18234 series has become known as TPEG Generation 1.

TPEG Generation 2

When the Traveller Information Services Association (TISA), derived from former forums, was inaugurated in December 2007, TPEG development was taken over by TISA and continued in the TPEG applications working group.

It was about this time that the (then) new Unified Modelling Language (UML) was seen as having major advantages for the development of new TPEG Applications in communities who would not necessarily have binary physical format skills required to extend the original TPEG TS work. It was also realized that the XML format for TPEG described within the ISO/TS 24530 series (now superseded) had a greater significance than previously foreseen, especially in the content-generation segment and that keeping two physical formats in synchronism, in different standards series, would be rather difficult.

As a result, TISA set about the development of a new TPEG structure that would be UML based. This has subsequently become known as TPEG Generation 2.

TPEG2 is embodied in the ISO/TS 21219 series and it comprises many parts that cover introduction, rules, toolkit and application components. TPEG2 is built around UML modelling and has a core of rules that contain the modelling strategy covered in ISO/TS 21219-2, ISO/TS 21219-3, ISO/TS 21219-4 and the conversion to two current physical formats: binary and XML; others could be added in the future. TISA uses an automated tool to convert from the agreed UML model XML file directly into an MS Word document file, to minimize drafting errors, that forms the Annex for each physical format.
TPEG2 has a three container conceptual structure: Message Management (ISO/TS 21219-6), Application (many Parts) and Location Referencing (ISO/TS 21219-7). This structure has flexible capability and can accommodate many differing use cases that have been proposed within the TTI sector and wider for hierarchical message content.

TPEG2 also has many Location Referencing options as required by the service provider community, any of which may be delivered by vectoring data included in the Location Referencing container.

The following classification provides a helpful grouping of the different TPEG2 parts according to their intended purpose.

— Special applications: TPEG2-SNI (ISO/TS 21219-9), TPEG2-CAI (ISO/TS 21219-10);

— Location referencing: TPEG2-ULR (ISO/TS 21219-11), TPEG2-GLR (ISO/TS 21219-21), TPEG2-OLR (ISO/TS 21219-22);

TPEG2 has been developed to be broadly (but not totally) backward compatible with TPEG1 to assist in transitions from earlier implementations, while not hindering the TPEG2 innovative approach and being able to support many new features, such as dealing with applications having both long-term, unchanging content and highly dynamic content, such as Parking Information.

This document is based on the TISA specification technical/editorial version reference:
SP14002/1.0/001

1) Under development.
2) To be published.
3) Under development.
4) Under development.