American National Standard for Safe Use of Optical Fiber Communication Systems Utilizing Laser Diode and LED Sources
American National Standard for
Safe Use of Optical Fiber Communication Systems
Utilizing Laser Diode and LED Sources

Secretariat
The Laser Institute of America

Approved August 12, 1997
American National Standards Institute, Inc.
American National Standard

An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

The Laser Institute of America, Suite 125
12424 Research Parkway, Orlando, FL 32826
Tel:(407) 380-1553

Copyright © 1997 by Laser Institute of America, Inc.
All rights reserved.

No part of this publication may be reproduced in any form in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

First Printing November 1997
Notice

(This notice is not part of the American National Standard Z136 series of laser safety standards.)

Z136 standards and recommended practices are developed through a consensus standards development process approved by the American National Standards Institute. The process brings together volunteers representing varied viewpoints and interests to achieve consensus on laser safety related issues. As Secretariat to ASC Z136, the Laser Institute of America (LIA) administers the process and provides financial and clerical support to the committee.

The LIA and its directors, officers, employees, members, affiliates and sponsors, expressly disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document or these standards. The LIA’s service as Secretariat does not constitute, and LIA does not make, any endorsement, warranty or referral of any particular standards, practices, goods, or services that may be referenced in this document. The LIA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein. The LIA has no power, nor does it undertake to police or enforce compliance with the contents of this document.

In issuing and making this document available, the LIA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the LIA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.
Foreword

(This foreword is not part of American National Standard Z136.2-1997)

This American National Standard provides guidance for the safe use of optical fiber communications systems (OFCS) utilizing laser diode and/or light emitting diode (LED) sources by defining control measures for each of four service group classifications. Once an OFCS is assigned the appropriate service group classification, there should be no need to carry out tedious measurements or calculations to meet the provisions of the standard. This standard provides the information necessary to assign a service group to unclassified OFCS, or modified OFCS requiring reclassification.

During normal system operation OFCS are completely enclosed, there is no accessible emission and, therefore, no hazard. During service, however, there may be accessible emission. Consequently, each OFCS is assigned a service group classification based on potential hazard. Service group determination is based solely on output characteristics regardless of the type of source, i.e., laser diode or LED.

Since this standard was first published, advances in technology have led to lasers used for OFCS that operate at power levels greater than 50 mW. Guidance is provided for higher power levels and is compatible with ANSI Z136.1.

This standard has been published as part of the American National Standard Z136 series. The basic document is American National Standard for the Safe Use of Lasers, ANSI Z136.1. In general, this standard may be used independently of ANSI Z136.1. Instances where additional guidance contained in ANSI Z136.1 is required are noted in this document.

Every effort has been made to make this standard compatible with ANSI Z136.1 and IEC 825-1 and 825-2-1993. The KX3A hazard level of IEC 825-2-1993 has not been adopted, however.

While there is considerable compatibility among existing laser safety standards, some requirements differ among state, federal and international standards, particularly with respect to signs, symbols and control measures.

Suggestions for improvement of this standard will be welcome. They should be sent to the American National Standards Institute, Inc., 11 West 42nd Street, New York, N.Y. 10036.

This standard was processed and approved for submittal to ANSI by Accredited Standards Committee Z136 on the Safe Use of Lasers, whose scope covers protection against hazards associated with the use of lasers and optically radiating diodes. Committee approval of the standard does not necessarily imply that all members voted for its approval. At the time it approved this standard, the Z136 Committee had the following members:

Sidney S. Charschan, Chairman
Ami Kestenbaum, Secretary

At the time it approved this standard, the Z136 Committee had the following members:

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academy of Laser Dentistry</td>
<td>Leo J. Miserendino</td>
</tr>
<tr>
<td>American Automobile Manufacturers Association</td>
<td>Faye Holmes</td>
</tr>
<tr>
<td>American Glaucoma Society</td>
<td>Patrick R. Frazee (Alt)</td>
</tr>
<tr>
<td>American Industrial Hygiene Association</td>
<td>Michael S. Berlin</td>
</tr>
<tr>
<td>American Insurance Services Group</td>
<td>R. Timothy Hitchcock</td>
</tr>
<tr>
<td>American Optometric Association</td>
<td>Martin R. Horowitz (Alt)</td>
</tr>
<tr>
<td>American Society for Laser Medicine and Surgery</td>
<td>Stewart M. Fastman</td>
</tr>
<tr>
<td>American Society of Safety Engineers</td>
<td>Donald Pitts</td>
</tr>
<tr>
<td>American Society for Testing and Materials (ASTM)</td>
<td>R. V. Lobrando</td>
</tr>
<tr>
<td></td>
<td>James S. McCaughan, Jr. (Alt)</td>
</tr>
<tr>
<td></td>
<td>Walter M. Nickens</td>
</tr>
<tr>
<td></td>
<td>John Detrio</td>
</tr>
</tbody>
</table>
The various subcommittees which participated in developing this standard had the following members:

(1) Biological Effects
Myron L. Wolbarsht, Chairman

Janusz Z. Beer
Michael W. Berns
Alexander M. Clarke
Francois C. Delori
Donald N. Farrer
Victoria Hitchins
Maurice B. Landers, III
David J. Lund
Wesley J. Marshall

Donald G. Pitts
R. James Rockwell, Jr.
David H. Slaney
H. G. Sperling
Bruce E. Stuck
Arthur Vassiliadis
Robert Weiner
Joseph Zoclich

(2) Hazard Evaluation and Classification
David H. Slaney, Chairman

H. David Edmonds
Dennis Hadlock
S. Mike Held
R. Timothy Hitchcock
Robert James
Jack A. Labo
David J. Lund

Terry Lyon
Wesley J. Marshall
Richard W. O’Neil
Ronald C. Petersen
R. James Rockwell, Jr.
Mark E. Rogers
Robert Weiner

(3) Measurements and Instrumentation
Thomas R. Scott, Co-Chairman
John Lehman, Co-Chairman

Jerry Dennis
James Franks
R. Timothy Hitchcock
Ami Kestenbaum
Horacio M. Marcos

Wesley J. Marshall
Ronald C. Petersen
R. James Rockwell, Jr.
David H. Slaney
Dan K. Thomas

(4) Control Measures
R. James Rockwell, Jr., Chairman

J. D. Brown
J. Richard Buys
Eugene Dynek
H. David Edmonds
Judie Garrity
Gregory M. Geary
Robert Handren
Patricia Hartwig
James R. Johnson
Jack A. Labo
Michael W. Mayo
Robert Miniutti
C. Eugene Moss

William E. Murray
R. W. O’Neil
Wordie H. Parr
Martin Randall
Alan K. Reeter
David H. Slaney
Penny J. Smiley
James F. Smith
R. J. Tucker
J. D. Webb
Robert Weiner
Dean Wilson
(5) Elements of Safety and Training Program
James F. Smith, Co-Chairman
H. David Edmunds
Darrell Hull
James R. Johnson
R. James Rockwell, Jr.
Fred P. Seeber
David H. Sloney

(6) Medical Surveillance
Bruce E. Stuck, Chairman
John W. Copeman
Bruce A. Dalton
Alan M. Ducatman
Maurice B. Landers, Ill
Elmer M. Soles
Stephen L. Trokel
Myron L. Wolbarsht

(7) Non-Beam Hazards
R. Timothy Hitchcock, Co-Chairman
C. Eugene Moss, Co-Chairman
C. Jeffery Bryant
J. Richard Buys
Betty Carrell
Daryl J. Doyle
H. David Edmunds
Cindy Gifford
Richard S. Hughes
Richard O’Neil
Douglas E. Ott
Penny J. Smalley
James F. Smith
Dan K. Thomas
Arthur G. Varanelli

(8) Terminology
H. David Edmunds, Chairman
Marcus D. Benedetto
Jerry Dennis

(9) Editorial
Ami Kestenbaum, Chairman
Sidney S. Charschan
Horacio M. Marcos
Ronald C. Petersen
Paul A. Testagrossa

(10) Fiber Optics
Ronald C. Petersen, Chairman
Jerry Dennis
Jane E. Ehrgott
Ami Kestenbaum
Terry Lyon
C. Mao
Wesley Marshall
C. Eugene Moss
Andrew Roberts
R. James Rockwell, Jr.
Thomas R. Scott
David H. Sloney
James F. Smith
Paul A. Testagrossa
Robert Weiner
Myron L. Wolbarsht

(11) Safety in Health Care Facilities
Stephen L. Trokel, Chairman
George S. Abele
Bruce A. Carlson
Leonard J. Cerullo
Marcus D. Benedetto
Jerry Dennis
Richard Felton
Donald A. Gagliano
Jerome M. Garden
Richard O. Gregory
Robert T. Handren
James Hathaway
Timothy Hitchcock
Raymond J. Lanzafame
James Larson
Rocco Lobraico
Dan C. Martin
Leo J. Miserecondino
C. Eugene Moss
Robert H. Ossoff
Eric J. Sacknoff
R. James Rockwell, Jr.
B. H. G. Rogers
Stephen M. Waldow
Myron L. Wolbarsht
Harvey Wigfor
(12) Safety in Educational Institutions
Fred P. Seeber, Chairman
Kenneth L. Barat
Thomas A. Cellucci
William A. Deutschman
H. David Edmunds
Robert Handren
Dan Hull
James Johnson
Walter M. Nickens
James F. Smith

(13) Analysis and Applications
Wesley J. Marshall, Chairman
C. W. Connor
Mollie Foster
James Franks
Greg Gorsuch
Ken Keppler
Greg Makhov
Ronald C. Petersen
Darrell Seeley
Tony Sliwa
R. Yacovissi
Sheldon Zimmerman

(14) Nursing & Allied Health
Penny J. Smalley, Chair Person
Contents

1. General ... 1
 1.1 Scope .. 1
 1.2 Intended Use ... 1
 1.3 Application ... 1
 1.4 OFCS Utilizing Laser Diodes 3
 1.5 OFCS Utilizing LEDs ... 4
 1.6 Optical Fiber Test Sets 4

2. Definitions .. 4

3. Hazard Evaluation and Service Group Classification 9
 3.1 General .. 9
 3.2 Laser and LED Consideration 10
 3.3 OFCS Service Group Classification 11
 3.4 Environment in Which the OFCS is Used 12
 3.5 Personnel ... 13

4. Control Measures .. 13
 4.1 General Considerations 13
 4.2 Uncontrolled Area ... 14
 4.3 Controlled Area ... 15

5. Safety and Training Programs 16
 5.1 Organizations .. 16
 5.2 Training ... 16
 5.3 Responsibilities of Individuals Working with OFCS 16

6. Medical Surveillance of OFCS Personnel 16
 6.1 Purpose .. 16
 6.2 Rationale ... 16
 6.3 Coverage ... 16

7. Non-Beam Hazards .. 17
 7.1 Glass Particle Hazards 17
 7.2 Photocuring Hazards ... 17
 7.3 Solvents and Chemicals 17

8. Criteria for Exposure of the Eye and Skin 17
 8.1 Small Source and Extended (Large) Source Ocular Exposures . 17
 8.2 MPE for Ocular Exposures 18
 8.3 Skin Exposure .. 19

9. Measurements .. 19
 9.1 General .. 19
 9.2 Measurement of Power .. 19

10. Revision of American National Standards Referred to in this Document 20

Tables
 Table 1 Potential Risk Associated with Each Service Group 21
 Table 2(a) Measurement Criteria for Service Group Classification . 22
 Table 2(b) Limiting Apertures for Hazard Evaluation 22
 Table 3 MPE for Small Source Viewing for OFCS 23
 Table 4 Parameters and Correction Factors 24
 Table 5 OFCS MPEs for Selected Exposure Durations 25
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6 Accessible Emission Limits</td>
<td>26</td>
</tr>
<tr>
<td>Table 7 SG1 Accessible Emission Limits for Selected Wavelengths and Optical Fibers</td>
<td>27</td>
</tr>
<tr>
<td>Table 8 SG3a Accessible Emission Limits for Selected Wavelengths and Optical Fibers</td>
<td>28</td>
</tr>
<tr>
<td>Figures</td>
<td></td>
</tr>
<tr>
<td>Fig. 1 Ocular MPE for "Small Source" Viewing for Visible and Near Infrared Radiation (Wavelengths Between 0.4 and 1.4 μm)</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 2a Accessible Emission Limits for SG1 Singlemode Fiber</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 2b Accessible Emission Limits for SG1 Multimode Fiber</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 3a Accessible Emission Limits (Irradiance) for SG3a Singlemode Fiber</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 3b Accessible Emission Limits (Irradiance) for SG3a Multimode Fiber</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 4a Accessible Emission Limits (Power) for SG3a Singlemode Fiber</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 4b Accessible Emission Limits (Power) for SG3a Multimode Fiber</td>
<td>35</td>
</tr>
<tr>
<td>Appendixes</td>
<td></td>
</tr>
<tr>
<td>Appendix A Example of Typical Viewing Conditions, Nominal Ocular Hazard Distances (NOHDs) and AELs for OFCS</td>
<td>36</td>
</tr>
<tr>
<td>Figures</td>
<td></td>
</tr>
<tr>
<td>Fig. A1 Unaided Viewing</td>
<td>37</td>
</tr>
<tr>
<td>Fig. A2 Optically Aided Viewing</td>
<td>37</td>
</tr>
<tr>
<td>Fig. A3 Measurement Arrangement Used for Purpose of Service Group Classification</td>
<td>37</td>
</tr>
<tr>
<td>Fig. A4 NOHD as a Function of Output Power for a Singlemode Optical Fiber with a Mode Field Diameter (\omega_0) equal to 8.8 μm</td>
<td>38</td>
</tr>
<tr>
<td>Fig. A5 NOHD as a Function of Output Power for a Multimode Optical Fiber (Wavelength = 0.825 μm)</td>
<td>39</td>
</tr>
<tr>
<td>Fig. A6 NOHD as a Function of Output Power for a Singlemode Optical Fiber (Wavelength = 0.980 μm)</td>
<td>40</td>
</tr>
<tr>
<td>Fig. A7 NOHD as a Function of Output Power for a Multimode Optical Fiber (Wavelength = 0.980 μm)</td>
<td>41</td>
</tr>
<tr>
<td>Fig. A8 NOHD as a Function of Output Power for a Singlemode Optical Fiber (Wavelength = 1.310 μm)</td>
<td>42</td>
</tr>
<tr>
<td>Fig. A9 NOHD as a Function of Output Power for a Multimode Optical Fiber (Wavelength = 1.310 μm)</td>
<td>43</td>
</tr>
<tr>
<td>Fig. A10 NOHD as a Function of Output Power for a Singlemode Optical Fiber (Wavelength = 1.48 and 1.550 μm)</td>
<td>44</td>
</tr>
<tr>
<td>Fig. A11 NOHD as a Function of Output Power for a Multimode Optical Fiber (Wavelength = 1.48 and 1.550 μm)</td>
<td>45</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
</tr>
<tr>
<td>B.1 General</td>
<td>46</td>
</tr>
<tr>
<td>B.2 Symbols</td>
<td>46</td>
</tr>
<tr>
<td>B.3 Examples of MPE Determination and Service Group Classification</td>
<td>46</td>
</tr>
<tr>
<td>B.4 Determining the Beam Divergence</td>
<td>52</td>
</tr>
<tr>
<td>B.5 Determining the Safe Viewing Distance</td>
<td>52</td>
</tr>
<tr>
<td>B.6 Optically Aided Viewing</td>
<td>53</td>
</tr>
<tr>
<td>B.7 Large Source Conditions</td>
<td>54</td>
</tr>
<tr>
<td>Appendix C</td>
<td>56</td>
</tr>
<tr>
<td>Appendix D</td>
<td>57</td>
</tr>
<tr>
<td>D.1 General References</td>
<td>57</td>
</tr>
<tr>
<td>Appendix E</td>
<td>58</td>
</tr>
<tr>
<td>E.1 Ocular History</td>
<td>58</td>
</tr>
<tr>
<td>E.2 Visual Acuity</td>
<td>58</td>
</tr>
<tr>
<td>E.3 Macular Function</td>
<td>58</td>
</tr>
<tr>
<td>E.4 Further Examinations</td>
<td>58</td>
</tr>
<tr>
<td>E.5 Frequency of Medical Examinations</td>
<td>58</td>
</tr>
<tr>
<td>E.6 Records and Records Retention</td>
<td>58</td>
</tr>
<tr>
<td>E.7 Access to Records</td>
<td>58</td>
</tr>
</tbody>
</table>