Specification for the Design, Testing and Utilization of Industrial Steel Cantilevered Storage Racks
American National Standard

Approval of an American National Standard requires verification by the American National Standards Institute (ANSI) that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by
Rack Manufacturers Institute
An Industry Group of MHI
8720 Red Oak Blvd., Suite 201, Charlotte, NC, 28217-3992
Telephone: (704) 676-1190 Fax: (704) 676-1199
www.mhi.org/rmi
standards@mhi.org

© 2016 by MHI
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.
American National Standard

Specification for the
Design, Testing and Utilization of
Industrial Steel Cantilevered Storage Racks

Rack Manufacturers Institute (RMI)
An Industry Group of MHI

Approved October 8, 2015
American National Standards Institute, Inc.
FOREWORD This standard, which was developed under the American National Standards Institute (ANSI) Canvass method and approved by ANSI on October 8, 2015, represents suggested design practices and operational requirements for cantilevered storage racks. It was developed by MHI, along with the Rack Manufacturers Institute (“RMI”), one of its Industry Groups, and is intended to provide useful information and guidance for owners, users, designers, purchasers or specifiers of material handling equipment or systems. It is advisory only and should only be regarded as a simple tool that its intended audience may or may not choose to follow, adopt, modify, or reject. A standard may be part of, but does not constitute a comprehensive safety program that cannot guard against pitfalls in operating, selecting and purchasing cantilevered storage racks, and should not be relied upon as such. Such a program should be developed by a qualified professional.

VOLUNTARY. The use of this document is completely voluntary. Its existence does not in any respect preclude anyone, whether it has approved this standard or not, from following procedures and assuming responsibilities not conforming to this standard.

DISCLAIMER OF LIABILITY. MHI, RMI and their members assume no responsibility and disclaim all liability of any kind, however arising, as a result of acceptance or use or alleged use of this standard. Anyone using this standard specifically understands and agrees that MHI, RMI, their members, officers, agents, and employees shall not be liable under any legal theory of any kind for any action or failure to act with respect to the design, erection, installation, manufacture, and preparation for sale, sale, characteristics, features, or delivery of anything covered by this standard or any other activity covered by this standard. Any use of this information must be determined by the user to be in accordance with applicable federal, state, and local laws and regulations.

DISCLAIMER OF WARRANTY. MHI, LODEM and their members make NO WARRANTIES of any kind, express or implied, in connection with the information in this brochure and SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR PARTICULAR PURPOSE.

INDEMNIFICATION. By referring to or otherwise employing this standard, its user agrees to defend, protect, indemnify, and hold MHI, RMI, their members, officers, agents, and employees harmless from and against all claims, losses, expenses, damages, and liabilities, direct, incidental, or consequential, arising from acceptance or use or alleged use of this standard, including loss of profits and reasonable attorneys' fees which may arise out of the acceptance or use or alleged use of this document. The intent of this provision is to absolve and protect MHI, RMI, their members, officers, agents, and employees from any and all loss relating in any way to this document, including those resulting from the user's own negligence.
The Rack Manufacturers Institute (RMI) is comprised of companies that supply industrial steel storage racks and related structural systems. This standard is the result of RMI’s recognition of the need to standardize performance, and design criteria for the proper utilization of cantilevered storage racks, and was formulated under MHI procedures approved by ANSI.

Questions or suggestions for improvement regarding of this standard are welcome. Suggestions should be sent to: MH16.3 Committee, MHI, 8720 Red Oak Blvd., Suite 201, Charlotte, NC 28217; standards@mhi.org.

ERRATA. Important corrections to the text are summarized below:

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Feb. 16, 2016</td>
<td>Eq. 2-4 changed from $C_s = \frac{S_D S}{T R}$ to $C_s = \frac{S_D S}{R}$</td>
</tr>
</tbody>
</table>
Table of Contents
FOREWORD ... iv
SYMBOLS ... ix
NOMENCLATURE ... xi
1 GENERAL... 1
 1.1 Scope .. 1
 1.2 Materials .. 1
 1.3 Applicable Design Specifications ... 1
 1.4 Integrity of Rack Installations .. 1
 1.4.1 Owner Maintenance ... 1
 1.4.2 Plaque .. 2
 1.4.3 Conformance ... 2
 1.4.4 Load Application and Rack Configuration Drawings ... 2
 1.4.5 Multiple Configurations .. 2
 1.4.6 Small Installations ... 2
 1.4.7 Column Base Plates, Column Base, Column-Base Beams and Anchor Bolts 2
 1.4.8 Rack Damage .. 3
 1.4.9 Racks Connected to the Building Structure .. 3
 1.4.10 Plumbness Tolerance .. 3
 1.4.11 Vertical Tolerance of Arm Positions .. 3
2 LOADING ... 4
 2.1 Load Combinations for the ASD Method .. 4
 2.2 Load Factors and Combinations for the LRFD Method .. 4
 2.3 Vertical Loads ... 5
 2.3.1 Free-standing Cantilevered Columns ... 5
 2.3.2 Top-Tied Cantilevered Columns ... 5
 2.4 Impact Loads ... 6
 2.4.1 Impact Downward ... 6
 2.4.2 Impact Upward ... 6
 2.5 Horizontal Forces ... 6
 2.6 Wind Loads ... 6
 2.7 Earthquake Forces .. 6
 2.7.1 General .. 6
 2.7.2 Equivalent Lateral Force Method .. 7
 2.7.3 Displacement-based Method .. 21
 2.7.4 Concurrent Forces ... 21
 2.8 Snow Loads ... 21
 2.9 Other Loads ... 21
3 DESIGN PROCEDURES ... 22
4 DESIGN OF STEEL ELEMENTS AND MEMBERS .. 23
 4.1 Cold-Formed Steel Columns .. 23
 4.1.1 Properties of Sections ... 23
 4.1.2 Design for Flexure ... 23
 4.1.3 Design for Compression ... 23
 4.1.4 Built-up Members from Cold-Formed Sections ... 24
 4.1.5 Truss-type Members from Cold-Formed Sections ... 24
 4.2 Hot-Rolled Steel Columns .. 24
 4.2.1 Built-up Members from Hot-rolled Sections .. 24
 4.2.2 Truss-type Members from Hot-Rolled Sections ... 24
 4.3 Combined Compression and Bending ... 25

V1 - vi -
4.4 Column Splices .. 25
5 CANTILEVER ARM DESIGN... 26
5.1 General.. 26
5.2 Analysis .. 26
5.3 Bending Moments .. 26
5.4 Deflection... 26
5.5 Connection Design.. 26
6 CANTILEVER COLUMN DESIGN ... 28
6.1 General.. 28
6.2 Effective Length Design Method.. 28
 6.2.1 Non-top Tied Cross-Aisle Direction .. 28
 6.2.2 Top Tied Cross-Aisle Direction ... 28
 6.2.3 Down-Aisle Direction ... 28
 6.2.4 Alternate Design Method .. 29
6.3 Direct Analysis Method .. 29
 6.3.1 Application of the Direct Analysis Method .. 29
6.4 Capacity.. 30
6.5 Compression Flange Bracing ... 30
6.6 Cross-Aisle Deflection ... 30
 6.6.1 Free-standing Cantilevered Columns .. 30
 6.6.2 Top-tied Cantilevered Columns ... 30
6.7 Torsional Restraint.. 30
7 CANTILEVER BRACING DESIGN ... 32
7.1 Brace Members in the Down-Aisle Direction and their Connection to the Columns 32
8 COLUMN-TO-BASE CONNECTIONS, COLUMN BASES AND BASE PLATES 33
 8.1 General.. 33
 8.2 Connections .. 33
 8.3 Column Base and Base Plates .. 33
 8.4 Slab and Subgrade Evaluation ... 33
 8.5 Anchor Bolts .. 33
 8.5.1 Anchor Bolt Design .. 33
 8.5.2 Periodic Inspection of Anchor Bolt Installation ... 33
9 SPECIAL RACK DESIGN PROVISIONS .. 34
9.1 Overturning .. 34
10 TEST METHODS... 35
 10.1 General Testing Procedures ... 35
 10.1.1 Test Procedure .. 35
 10.1.2 Test Results Evaluation ... 35
 10.2 Perforated Stub-Column Test ... 35
 10.2.1 Test Specimen and Procedure ... 35
 10.2.2 Evaluation of Test Results .. 36
10.3 Column-to-Base Connection Test ... 36
 10.3.1 Strength and Stiffness .. 36
 10.3.2 Test Setup .. 36
10.4 Cyclic Test of Column-to-Base Beam Connections .. 37
 10.4.1 General... 37
 10.4.2 Definitions .. 37
 10.4.3 Test Subassemblage Requirements .. 37
 10.4.4 Essential Test Variables ... 38
 10.4.5 Testing Procedure ... 38
10.4.6 Material Testing Requirements

10.4.7 Test Reporting Requirements

10.4.8 Acceptance Criteria

10.4.9 Evaluation of Test Results

10.5 Arm Connection Test

10.5.1 Strength and Stiffness

10.5.2 Test Setup

10.5.3 Test Procedure

10.5.4 Evaluation of Test Results

References to the Text
SYMBOLS

The section or table number in the right-hand column refers to where the symbol is first used or defined.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DEFINITION</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_e</td>
<td>Effective area at the stress F_n</td>
<td>4.1.3.2</td>
</tr>
<tr>
<td>A_n</td>
<td>Nominal cross-sectional area</td>
<td>C10.1.2</td>
</tr>
<tr>
<td>$A_{net \ min}$</td>
<td>Minimum cross-sectional area obtained by passing a plane through the column normal to the axis of the column</td>
<td>10.2.2</td>
</tr>
<tr>
<td>A_i</td>
<td>Calculated cross-sectional area based on the weight of a length of failed component divided by the unit weight of steel times the length used for weighing</td>
<td>C10.1.2</td>
</tr>
<tr>
<td>C_d</td>
<td>Deflection amplification factor</td>
<td>2.7.2.3.1</td>
</tr>
<tr>
<td>C_f</td>
<td>Correction factor</td>
<td>C10.1.2</td>
</tr>
<tr>
<td>C_s</td>
<td>Seismic response coefficient</td>
<td>2.7.2.2</td>
</tr>
<tr>
<td>D</td>
<td>Dead load</td>
<td>2.1</td>
</tr>
<tr>
<td>E</td>
<td>Modulus of elasticity of steel</td>
<td>6.2.2.3</td>
</tr>
<tr>
<td>E</td>
<td>Earthquake (seismic) load</td>
<td>2.1</td>
</tr>
<tr>
<td>F_a</td>
<td>Site coefficient defined in Table 2.7.2.2.2 (2)</td>
<td>2.7.2.2.2</td>
</tr>
<tr>
<td>F_i</td>
<td>Lateral force at arm level, i</td>
<td>2.7.2.5</td>
</tr>
<tr>
<td>F_c</td>
<td>Critical buckling stress</td>
<td>4.1.2.2</td>
</tr>
<tr>
<td>F_e</td>
<td>Elastic buckling stress</td>
<td>C4.1.2.2</td>
</tr>
<tr>
<td>F_n</td>
<td>Nominal buckling stress</td>
<td>4.1.3.2</td>
</tr>
<tr>
<td>F_{si}</td>
<td>Site coefficient defined in Table 2.7.2.2.2 (3)</td>
<td>2.7.2.2.2</td>
</tr>
<tr>
<td>F_{lc}</td>
<td>Lateral force at any arm level</td>
<td>2.7.2.3</td>
</tr>
<tr>
<td>F_y</td>
<td>Yield stress for steel used for design</td>
<td>10.2.2</td>
</tr>
<tr>
<td>F_{yn}</td>
<td>Nominal yield stress of the failed component</td>
<td>C10.1.2</td>
</tr>
<tr>
<td>F_{yt}</td>
<td>Measured yield stress of the failed component</td>
<td>C10.1.2</td>
</tr>
<tr>
<td>H</td>
<td>Height of the loaded arm level</td>
<td>6.3.1</td>
</tr>
<tr>
<td>I</td>
<td>Impact loading on an arm or shelf</td>
<td>2.1</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia in the plane of bending</td>
<td>6.2.2.3</td>
</tr>
<tr>
<td>I_b</td>
<td>Moment of inertia of the arm about the bending axis</td>
<td>C10.5.4</td>
</tr>
<tr>
<td>I_p</td>
<td>System importance factor</td>
<td>2.7.2</td>
</tr>
<tr>
<td>K</td>
<td>Column stability coefficient based on location of the center of load</td>
<td>6.2.1</td>
</tr>
<tr>
<td>K_{st}</td>
<td>Top-tie stiffness (secant stiffness) at service loads</td>
<td>6.2.2.3</td>
</tr>
<tr>
<td>L</td>
<td>Live load other than the pallets or products stored on the racks</td>
<td>2.1</td>
</tr>
<tr>
<td>L</td>
<td>Height to the center of gravity of the arm loads</td>
<td>6.2.1</td>
</tr>
<tr>
<td>L</td>
<td>Distance between the column face and the load application point</td>
<td>C10.5.2</td>
</tr>
<tr>
<td>L_p</td>
<td>Limiting laterally unbraced length for plastic analysis</td>
<td>6.7</td>
</tr>
<tr>
<td>L_r</td>
<td>Roof live load</td>
<td>2.1</td>
</tr>
<tr>
<td>$M_{50%}$</td>
<td>50 percent of the ultimate moment observed in the test</td>
<td>C10.5.4</td>
</tr>
<tr>
<td>MCE</td>
<td>Maximum Considered Earthquake event</td>
<td>6.3.1.3</td>
</tr>
<tr>
<td>P</td>
<td>Maximum load from product stored on the rack</td>
<td>2.1</td>
</tr>
<tr>
<td>$P_{50%}$</td>
<td>Load applied at 50% of the ultimate moment observed in the test</td>
<td>C10.5.4</td>
</tr>
<tr>
<td>P_{app}</td>
<td>Portion of pallet or product load that is used to compute the seismic base shear</td>
<td>2.1</td>
</tr>
<tr>
<td>P_p</td>
<td>Bearing strength</td>
<td>8.3</td>
</tr>
<tr>
<td>Q</td>
<td>Capacity reduction factor for compressive members</td>
<td>10.2.2</td>
</tr>
<tr>
<td>R</td>
<td>Load from rain including ponding</td>
<td>2.1</td>
</tr>
<tr>
<td>R</td>
<td>Seismic response modification factor</td>
<td>2.7.2.2</td>
</tr>
<tr>
<td>S</td>
<td>Snow load</td>
<td>2.1</td>
</tr>
</tbody>
</table>
S_1 \quad \text{Mapped spectral accelerations for a 1-second period as determined in accordance with the USGS} \\
S_c \quad \text{Elastic section modulus of the net section for the extreme compression fiber times 1-0.5(1-Q)(F_c/F_y)^{Q}} \\
S_{D1} \quad \text{Design spectral response acceleration parameter for 1-second period (2/3) S_M} \\
S_{DS} \quad \text{Design spectral response acceleration parameter for short period (2/3) S_M} \\
S_e \quad \text{Elastic section modulus of the net section for the extreme compression fiber times (0.5+Q/2)} \\
S_{M1} \quad \text{Maximum considered earthquake spectral response accelerations for 1-second period} \\
S_{MS} \quad \text{Maximum considered earthquake spectral response accelerations for short period} \\
S_s \quad \text{Mapped spectral accelerations for short periods as determined in accordance with the USGS} \\
T \quad \text{Fundamental period of the cantilevered rack structure in each direction under consideration} \\
V \quad \text{Seismic base shear} \\
V_s \quad \text{Seismic base shear at any level} \\
W \quad \text{Wind load} \\
W_i \quad \text{D + P (used to determine the seismic lateral forces) + 0.25L at each level i} \\
W_s \quad \text{Loads on the structure that are used to compute the horizontal base shear.} \\
d \quad \text{Distance between the supports of the column segment} \\
f'c \quad \text{Minimum 28-day compression strength of the concrete} \\
g \quad \text{Acceleration due to gravity} \\
h \quad \text{Height to the top of the top arm at the connection to the column} \\
h \quad \text{Height to the top of the column} \\
h_i \text{ or } h_x \quad \text{Height from the base to level i or x} \\
h_{total} \quad \text{Height of the top arm level} \\
k_o \quad \text{Rotational stiffness} \\
t_n \quad \text{Nominal core thickness of the failed component element} \\
t_i \quad \text{Measured core thickness of the failed component element} \\
w_i \text{ or } w_x \quad \text{Portion of the total gravity load of the rack, located or assigned to the bottom shelf level, level i or x} \\
b \quad \text{Seismic product load coefficient} \\
\Delta_i \quad \text{Total lateral displacement at level i relative to the base, as computed using F_i} \\
\phi \quad \text{Resistance factor for LRFD} \\
\phi_e \quad \text{Resistance factor for bearing on concrete} \\
\Omega \quad \text{Factor of safety for ASD} \\
\Omega_c \quad \text{Factor of safety for bearing on concrete} \\
\delta_s \quad \text{Seismic drift of the top arm} \\
\delta_{sM} \quad \text{Maximum response drift} \\
\delta_{sMT} \quad \text{Required seismic separation between the rack and building structure} \\
\delta_{sM1} \quad \text{Amplified seismic drift of the cantilevered storage rack} \\
\delta_{sM2} \quad \text{Amplified seismic drift of the building structure} \\
\sigma_{ex}, \sigma_{ey}, \text{and } \sigma_t \quad \text{Compressive stresses calculated in accordance with the AISI standard}
\rho \quad \text{Redundancy factor for earthquake loading}
NOMENCLATURE
Note: Terms designated with † are common with AISI-AISC terms that are coordinated between the standards developers.

Allowable strength† - Nominal strength divided by the safety factor.

Allowable Strength Design (ASD) † - Method of proportioning structural components, such that the allowable strength equals or exceeds the required strength of the component under the action of the ASD load combinations.

Applicable code† - Code (enforced by the local building department) under which the structure is designed.

ASD load combination† - Load combination in Section 2.1 based on ASCE 7 [5] intended for allowable strength design (allowable stress design).

Buckling - Limit state of sudden change in the geometry of a structure or any of its elements under a critical loading condition.

Buckling strength - Nominal strength for buckling or instability limit states.

Built-up member, cross section, section or shape - Member, cross section, section or shape fabricated from structural steel or cold-formed steel elements that are bolted or welded together.

Cantilevered storage rack - A rack structure comprised primarily of vertical columns, extended bases, horizontal arms projecting from the face of the columns, and down-aisle bracing between columns. There can be shelf beams between arms depending on the product being stored. Cantilevered columns may be free-standing or top-tied.

Cladding - Exterior covering of structure.

Cold-formed steel structural member† - Shape manufactured by press-braking blanks sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; all forming operations being performed at ambient room temperature; that is, without manifest addition of heat such as would be required for hot forming.

Column - Structural member that has the primary function of resisting axial force and bending moment.

Concrete crushing - Limit state of compressive failure in concrete having reached the ultimate strain.

Concurrent forces - Two or more forces acting in conjunction with one another at a single location.

Connection† - Combination of structural elements and joints used to transmit forces between two or more members.

Cross-aisle – One of the two principal directions of the storage rack, corresponding to the direction perpendicular to the principal handling equipment aisle. This is also referred to as the transverse direction.

Cyclic test - A test designed and conducted to determine the column-to-base connection’s inelastic rotational rigidity, along with energy-dissipation properties, of the connection when the connection are subjected to cyclic loading conditions.

Design load† - Applied load determined in accordance with either LRFD load combinations or ASD load combinations, whichever is applicable.

Design professional – An engineer familiar with and experienced in the design of cantilevered storage rack. Also known as the Engineer of Record.
Design strength† - Resistance factor multiplied by the nominal strength, $F R_n$

Design stress - Design strength divided by the appropriate section property, such as section modulus or cross-sectional area.

Diagonal bracing - Inclined structural member carrying primarily axial force.

Direct analysis method – Design method for stability that captures the effects of residual stresses and initial out-of-plumbness of columns by reducing stiffness and applying notional loads in a second-order analysis.

Distortional buckling - A mode of buckling involving change in cross-sectional shape, excluding local buckling.

Double-stacking - When an arm is loaded with loads stacked one on top of another.

Down-aisle - One of the two principal directions of the storage rack, corresponding to the direction parallel to the principal handling equipment aisle. This is also referred to as the longitudinal direction.

Effective length - Length of an otherwise identical column with the same strength when analyzed with pinned-end conditions.

Effective length factor - Ratio between the effective length and the unbraced length of the member.

Effective section modulus - Section modulus reduced to account for buckling of slender compression elements.

Effective width - Reduced width of a plate or slab with an assumed uniform stress distribution which produces the same effect on the behavior of a structural member as the actual plate or slab width with its non-uniform stress distribution.

Engineer of Record – See “design professional.”

Factored load† - Product of a load factor and the nominal load.

Flexural buckling - Buckling mode in which a compression member deflects laterally without twist or change in cross-sectional shape.

Flexural-torsional buckling† - Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape.

Force - Resultant of distribution of stress over a prescribed area.

Free-standing (non-top tied) cantilevered columns – Columns without lateral support in the cross-aisle direction at the top.

Gravity load – Load, such as that produced by product, dead and live loads, acting in the downward direction.

Handled unit load - An individual product load weight expected to be placed into a location of the cantilevered storage rack.

Load and Resistance Factor Design (LRFD) † - Method of proportioning structural components such that the design strength equals or exceeds the required strength of the component under the action of the LRFD load combinations.

Load factor† - Factor that accounts for deviations of the nominal load from the actual load, for uncertainties in the analysis that transforms the load into a load effect and for the probability that more than one extreme load will occur simultaneously.

Local buckling - Limit state of buckling of a compression element within a cross-section.
LRFD load combination† - Load combination in Section 2.2 based on ASCE 7 [5] intended for strength design (load and resistance factor design).

Net area - Gross area reduced to account for removed material.

Nominal strength† - Strength of a structure or component (without the resistance factor or safety factor applied) to resist load effects, as determined in accordance with this Specification.

Notional load – Virtual load applied in a structural analysis to account for destabilizing effects that are not otherwise accounted for in the design provisions.

Out-of-plumb ratio - Maximum horizontal distance from the centerline of the column at the floor to a plumb line that extends downward from the centerline of the column at the top shelf elevation divided by the vertical distance from the floor to the top shelf elevation.

Overturning moment – Moment resulting from an applied force or lateral displacement in the cross-aisle direction.

Plaque – Signage permanently and prominently displayed depicting the permissible loading of the cantilevered storage rack.

Product load - The weight of the item(s) placed on the cantilevered storage rack

Rack-supported structure - A cantilevered storage rack structure similar to other rack structures; however, this structure also includes wall girts and roof purlins, or equivalent components, used to support wall and roof cladding. This structure is designed to withstand, wind and snow or rain loads, in addition to the normal storage rack loads.

Redundancy factor – Factor that accounts for the potential of structural distress when the system has lost the carrying capacity of one load carrying element.

Resistance factor† - Factor that accounts for unavoidable deviations of the nominal strength from the actual strength and for the manner and consequences of failure.

Safety factor† - Factor that accounts for deviations of the actual strength from the nominal strength, deviations of the actual load from the nominal load, uncertainties in the analysis that transforms the load into a load effect, and for the manner and consequences of failure. The nominal load divided by the safety factor results in the allowable load for an Allowable Strength Design.

Seismic response modification coefficient - Factor that reduces seismic load effects to strength level.

Service load – The actual unfactored loads to which the member will be subjected during its lifetime.

Simple lip – A single plate element used to stiffen a compression flange.

Site class definition - A classification assigned to a location based on the types of soils present

Stability - Condition reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements.

Stiffness - Resistance to deformation of a member or structure, measured by the ratio of the applied force (or moment) to the corresponding displacement (or rotation).

Stress - Force per unit area caused by axial force, moment, shear or torsion.

Structural system - An assemblage of load-carrying components that are joined together to provide interaction or interdependence.

Stub-column test – Concentric compression testing of members, not affected by column buckling, used to determine the column effectiveness.
Top-tied cantilevered columns – Columns with cross-aisle support members at the top of the column connected with pinned or moment-resisting connections.

Top Ties (overhead ties) – members tying the tops of the columns together in the cross-aisle direction.

Torsional buckling - Buckling mode in which a compression member twists about its shear center axis.

Torsional-flexural buckling - Buckling mode in which compression members bend and twist simultaneously without change in cross section shape.

Unbraced length - Distance between braced points of a member, measured between the centers of gravity of the bracing members.

Vertical impact load - Additional downward force added to the arms produced during loading of the cantilevered storage rack.

Web sidesway buckling - Limit state of lateral buckling of the tension flange opposite the location of a concentrated compression force.

Yield point† - First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM.

Yield strength† - Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM.
1 GENERAL

1.1 Scope
This Specification applies to free-standing and top-tied cantilevered storage racks made of cold-formed or hot-rolled structural steel members. This Specification also covers cantilevered storage racks with accessories, such as decked shelves, shed roofs and canopies.

The scope limits the applicability of this Specification to cantilevered storage racks made from either hot-rolled or cold-formed steel.

This Specification is intended to be used in conjunction with the Commentary, which serves to clarify and interpret this Specification.

1.2 Materials
This Specification requires the use of steel of structural quality that is listed in AISI S100, North American Specification for the Design of Cold-Formed Steel Structural Members [1] or the AISC 360 [2], and as defined by the specifications of the American Society of Testing and Materials (ASTM) therein.

Bolts, nuts and washers shall conform to the applicable ASTM or SAE standard. Hydrogen embrittlement shall be considered for bolts that are used in tension.

1.3 Applicable Design Specifications
Except as modified or supplemented in this Specification, the AISC 360 [2] shall apply to the design and testing of cantilevered storage rack made from hot-rolled structural steel members and AISI S100 [1] shall apply to the design and testing of cantilevered storage rack made from cold-formed structural steel members.

Capacities shall be determined using applicable standards appropriate for the structure or component. Where possible, a single standard should be used for the entirety of the rack structure. In the event of conflict between standards, the provision most specific to the component or structure shall be used.

1.4 Integrity of Rack Installations
1.4.1 Owner Maintenance
The Owner shall maintain the structural integrity of the installed rack system by assuring proper operational, housekeeping and maintenance procedures including, but not limited to the following:

1 Numbers in brackets refer to corresponding numbers in the References to the Text at the end of this Specification.