Power-Operated Vertical Carousels and Vertical Lift Modules
American National Standard

Approval of an American National Standard requires verification by the American National Standards Institute (ANSI) that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the sponsor whose name appears on the title page of this standard.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

Automated Storage Retrieval Systems
An Industry Group of MHI
8720 Red Oak Blvd., Suite 201, Charlotte, NC, 28217-3992
Telephone: (704) 676-1190 Fax: (704) 676-1199
www.mhi.org/asrs

© 2016 by MHI
All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America.
ANSI MH24.2-2016

American National Standard

Power-Operated Vertical Carousels and Vertical Lift Modules

Automated Storage Retrieval Systems (AS/RS)
An Industry Group of MHI

Approved December 6, 2016
American National Standards Institute, Inc.
FOREWORD. This standard, which was developed under the American National Standards Institute (ANSI) Canvass method and approved by ANSI on December 6, 2016, represents suggested design practices and operational requirements for power-operated vertical carousels and vertical lift modules. It was developed by MHI, along with Automated Storage and Retrieval Systems (“AS/RS”), one of its Industry Groups, and is intended to provide useful information and guidance for owners, users, designers, purchasers or specifiers of material handling equipment or systems. It is advisory only and should only be regarded as a simple tool that its intended audience may or may not choose to follow, adopt, modify, or reject. A standard may be part of, but does not constitute a comprehensive safety program that cannot guard against pitfalls in operating, selecting and purchasing such a system, and should not be relied upon as such. Such a program should be developed by a qualified professional.

VOLUNTARY. The use of this document is completely voluntary. Its existence does not in any respect preclude anyone, whether it has approved this standard or not, from following procedures and assuming responsibilities not conforming to this standard.

DISCLAIMER OF LIABILITY. MHI, AS/RS and their members assume no responsibility and disclaim all liability of any kind, however arising, as a result of acceptance or use or alleged use of this standard. Anyone using this standard specifically understands and agrees that MHI, AS/RS, their members, officers, agents, and employees shall not be liable under any legal theory of any kind for any action or failure to act with respect to the design, erection, installation, manufacture, and preparation for sale, sale, characteristics, features, or delivery of anything covered by this standard or any other activity covered by this standard. Any use of this information must be determined by the user to be in accordance with applicable federal, state, and local laws and regulations.

DISCLAIMER OF WARRANTY. MHI, AS/RS and their members make NO WARRANTIES of any kind, express or implied, in connection with the information in this brochure and SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR PARTICULAR PURPOSE.

INDEMNIFICATION. By referring to or otherwise employing this standard, its user agrees to defend, protect, indemnify, and hold MHI, AS/RS, their members, officers, agents, and employees harmless from and against all claims, losses, expenses, damages, and liabilities, direct, incidental, or consequential, arising from acceptance or use or alleged use of this standard, including loss of profits and reasonable attorneys’ fees which may arise out of the acceptance or use or alleged use of this document. The intent of this provision is to absolve and protect MHI, AS/RS, their members, officers, agents, and employees from any and all loss relating in any way to this document, including those resulting from the user's own negligence.
The Automated Storage Retrieval Systems (AS/RS), an Industry Group of MHI, comprises a substantial portion of the major companies that design and manufacture automated storage and retrieval systems in the United States. AS/RS recognized the need to develop a comprehensive standard that establishes minimum design and performance criteria for the proper application and use of automated storage retrieval systems. This resulting standard was formulated according to ANSI procedures.

At the time this standard was approved, AS/RS consisted of the following member companies:

- Daifuku America
- Dematic Corp.
- Hanel Storage Systems
- Integrated Systems Design - ISD
- Kardex Remstar
- Knapp Logistics Automation
- Lenze Americas
- MIAS, Inc.
- MURATEC - Logistics & Automation Division
- Retrotech, Inc.
- SencorpWhite
- SICK, Inc.
- Swisslog Logistics, Inc.
- Symbotic LLC
- System Logistics Corporation
- Viastore Systems, Inc.
- Westfalia Technologies, Inc.

Suggestions for improvement and questions regarding interpretation of this standard are welcome. Suggestions should be sent to: MH24.2 Committee (AS/RS), MHI, 8720 Red Oak Blvd., Suite 201, Charlotte, NC, 28217; or to standards@mhi.org.
Table of Contents

1 Purpose and Scope ... 2
 1.1 Purpose ... 2
 1.2 Scope .. 2
 1.3 Limitations ... 2
2 Normative References .. 2
3 Terms and Definitions ... 4
4 Significant Hazards ... 5
 4.1 Mechanical Hazards .. 5
 4.1.1 Crushing and Shearing ... 5
 4.1.2 Entanglement .. 5
 4.1.3 Drawing-in .. 5
 4.1.4 Impact/Collision ... 5
 4.1.5 Objects Falling Out and/or Dropping ... 5
 4.1.6 Potential Failure of Structure ... 5
 4.1.7 Slipping, Stumbling, or Falling ... 5
 4.1.8 Potential Lack of Tipping Stability ... 5
 4.2 Electrical Power Hazards .. 5
 4.3 Ignoring Ergonomic Principles in Machine Design – Hazards .. 5
 4.4 Failure of Power Supply, Failure of Machine Parts or Other Functional Faults – Hazards 7
 4.5 Improper Design or Failure of Safety Systems – Hazards .. 7
 4.6 Electromagnetic Influences – Hazards .. 8
5 Design and Installation Requirements and Protective Measures ... 8
 5.1 General Requirements .. 8
 5.2 Mechanical Requirements and Protective Measures ... 8
 5.2.1 Design and Installation .. 8
 5.2.2 Carousels .. 10
 5.2.3 Vertical Lift Modules .. 11
 5.3 Electrical Requirements and Protective Measures ... 11
 5.3.1 General .. 11
 5.3.2 Isolating Devices .. 12
 5.3.3 Environment ... 12
 5.3.4 Wiring Method ... 12
 5.4 Ergonomics .. 12
 5.4.1 Pick-up and Deposit Areas at Carousels and Vertical Lift Modules .. 12
 5.4.2 Controls .. 12
 5.4.3 Location of Control Stations .. 12
Preface

This standard is a Type C standard as defined in ANSI/ISO 12100-2012.

The machinery concerned and the extent to which hazards, hazardous situations, and hazardous events are covered are indicated in the scope of this standard.

The following statement applies to machines designed and built according to the specifications of this Type C standard:

“When provisions of this type C standard are different from those which are stated in type A or B standards, the provisions of this type C standard take precedence over the provisions of the other standards for machines that have been designed and built according to the provisions of this type C standard.”

When this standard was prepared, it was assumed that:

a) only trained staff would operate, inspect, repair or maintain the machine;

b) components without special requirements are:
 1) sized in accordance with good engineering practice and calculation methods, including all types of failure;
 2) correctly constructed mechanically and electrically;
 3) made of materials that have adequate loading capacity, are of suitable quality, and are fit for that purpose;

c) components are kept in a good repair and operating condition so that the required characteristics can be maintained despite wear and tear;

d) details of particular conditions of use and the installation site are agreed upon between user and manufacturer or manufacturer’s authorized representative;

e) the working area is adequately illuminated; and

f) the installation site affects the proper operation of the machine.
Power-Operated Vertical Carousels and Vertical Lift Modules

1 Purpose and Scope

1.1 Purpose

The purpose of this standard is to serve as a guide for designers, manufacturers, sellers, installers, users, and governing bodies associated with power-operated vertical carousels and vertical lift modules.

1.2 Scope

The scope of this standard is to eliminate or minimize the hazards described in Clause 4 which can arise during installation, start up, operation, maintenance, testing, and dismantling of power-operated vertical carousels and vertical lift modules.

The scope presumes that the power-operated vertical carousels and vertical lift modules would be installed and operated indoors in an environment that does not contribute to hazards. When evaluating hazards, considerations for environmental or external factors should be taken into account, including, but not limited to:

- outdoor installations;
- hot or cold temperatures or temperature fluctuations;
- corrosive or explosive environments;
- magnetic fields;
- radioactive conditions;
- hazardous materials storage;
- floods, earthquakes, or other natural disasters; or
- food contact.

Examples of power-operated vertical carousels and vertical lift modules to which this standard applies are shown in Annex A.

1.3 Limitations

This standard applies to buildings and parts of buildings only insofar that the hazards and risks of interfaces with the power-operated vertical carousels and vertical lift modules are assessed.

Power-operated vertical carousels and vertical lift modules that uses human labor or gravity as the power source is excluded from the scope of this standard.

Power-operated vertical carousels and vertical lift modules and their components are intended to handle and store goods or material. They are not designed as passenger lifts and are not intended for human occupancy or transport.

This standard does not take into account hazards that arise from noisy environments or environments subject to electromagnetic interference as defined in IEEE C63.14-2009 and which are outside the range quoted in IEC 61000-6-2:2005.

2 Normative References

The following referenced documents are indispensable to the application of this document. For dated references, only the edition cited applies; for undated references, the latest edition of the referenced document (including any amendments) applies.

- ANSI B11.19-2010, Performance Criteria for Safeguarding
- ANSI/AGMA 2001-D04 (R2010), Fundamental Rating Factors and Calculation Methods for Spur and Helical Gear
- ANSI/AGMA ISO 6336-6-A08, Calculation of Load Capacity of Spur and Helical Gears - Part 6: Calculation of Service Life Under Variable Load