Alternating Current Corrosion on Cathodically Protected Pipelines: Risk Assessment, Mitigation, and Monitoring

This NACE International standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. Its acceptance does not in any respect preclude anyone, whether he or she has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in conformance with this standard. Nothing contained in this NACE standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by letters patent, or as indemnifying or protecting anyone against liability for infringement of letters patent. This standard represents minimum requirements and should in no way be interpreted as a restriction on the use of better procedures or materials. Neither is this standard intended to apply in all cases relating to the subject. Unpredictable circumstances may negate the usefulness of this standard in specific instances. NACE assumes no responsibility for the interpretation or use of this standard by other parties and accepts responsibility for only those official NACE interpretations issued by NACE in accordance with its governing procedures and policies which preclude the issuance of interpretations by individual volunteers.

Users of this NACE standard are responsible for reviewing appropriate health, safety, environmental, and regulatory documents and for determining their applicability in relation to this standard prior to its use. This NACE standard may not necessarily address all potential health and safety problems or environmental hazards associated with the use of materials, equipment, and/or operations detailed or referred to within this standard. Users of this NACE standard are also responsible for establishing appropriate health, safety, and environmental protection practices, in consultation with appropriate regulatory authorities if necessary, to achieve compliance with any existing applicable regulatory requirements prior to the use of this standard.

CAUTIONARY NOTICE: NACE standards are subject to periodic review, and may be revised or withdrawn at any time in accordance with NACE technical committee procedures. NACE requires that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of initial publication and subsequently from the date of each reaffirmation or revision. The user is cautioned to obtain the latest edition. Purchasers of NACE standards may receive current information on all standards and other NACE publications by contacting the NACE FirstService Department, 15835 Park Ten Place, Houston, TX 77084-5145 (telephone +1 281-228-6200).

ABSTRACT
This standard practice presents guidelines and procedures for use during risk assessment, mitigation, and monitoring of corrosion on underground, cathodically protected steel piping systems caused by proximity to alternating current (AC) power supply systems.

As shared right-of-way and utility corridor practices become more common, AC influence on adjacent metallic structures has greater significance, and corrosion due to AC influence becomes of greater concern. This standard is not intended to supersede or replace existing corrosion control standards, but rather to complement these standards when the influence of AC-powered systems becomes significant.

The effects of lightning and AC power transmission systems on human safety are not covered by this standard. However, the mitigation measures implemented for safety and system protection, as outlined in NACE SP0177, can also be used for AC corrosion control and are cited whenever feasible.

KEYWORDS
Cathodic protection, alternating current (AC), pipeline, corrosion.
Foreword

In NACE standards, the terms **shall**, **must**, **should**, and **may** are used in accordance with the definitions of these terms in the NACE Publications Style Manual. The terms **shall** and **must** are used to state a requirement, and are considered mandatory. The term **should** is used to state something good and is recommended, but is not considered mandatory. The term **may** is used to state something considered optional.

This standard practice presents guidelines and procedures for use during risk assessment, mitigation, and monitoring corrosion on underground, cathodically protected steel piping systems caused by proximity to alternating current (AC) power supply systems. This standard is not intended to supersede or replace existing corrosion control standards, but rather to complement these standards when the influence of AC-powered systems becomes significant.

As shared right-of-way and utility corridor practices become more common, AC influence on adjacent metallic structures has greater significance, and corrosion due to AC influence becomes of greater concern.

The effects of lightning and AC power transmission systems on human safety are not covered by this standard. However, the mitigation measures implemented for safety and system protection, as outlined in NACE SP0177, can also be used for AC corrosion control and are cited whenever feasible.1

The original technical background for this standard is the NACE Technical Committee Report “AC Corrosion State-of-the-Art: Corrosion Rate, Mechanism, and Mitigation Requirements” prepared by NACE Task Group 327 and published by NACE in January 2010.2 Supplements to the current understanding of AC corrosion and criteria for this have been made in PRCI(1) reports3,4 published in October 2016.

This standard addresses typical power transmission frequencies up to 60 Hz only.

This standard was prepared by Task Group (TG) 430 on “AC Corrosion on Cathodically Protected Pipelines: Risk Assessment, Mitigation, and Monitoring” in 2018. TG 430 is administered by Specific Technology Group (STG) 05 on Cathodic/Anodic Protection and sponsored by STG 35 on Pipelines. This standard is issued by NACE under the auspices of STG 05.

Alternating Current Corrosion on Cathodically Protected Pipelines: Risk Assessment, Mitigation, and Monitoring

1. General ... 4
2. Definitions .. 4
3. Sources of AC ... 5
4. Basic Understanding of AC Corrosion 5
5. Risk Assessment .. 6
6. Criteria ... 8
7. Mitigation ... 8
8. Monitoring Strategies ... 9
9. Long Term Monitoring .. 12
 References .. 13
 Appendix A: Measurement and Monitoring Equipment (Nonmandatory) 14

©2018 NACE International, 15835 Park Ten Place, Suite 200, Houston TX 77084, USA. All rights reserved. Reproduction, republication or redistribution of this standard in any form without the express written permission of the publisher is prohibited. Contact NACE International by means of our website www.nace.org, email FirstService@nace.org, or (phone) 281-228-6223 for reprints of this standard.
Section 1: General

1.1 AC (alternating current) corrosion is defined as corrosion initiated and propagating under the influence of alternating current. AC corrosion on cathodically protected underground pipelines is commonly the result of a combined action of the AC voltage, the cathodic protection conditions, a coating defect—usually small—and the chemical and physical conditions of the soil. If the AC component is either entirely removed or limited to a certain level, the corrosion will be mitigated.

AC corrosion is also influenced by direct current (DC). As such, in addition to mitigation by limiting the AC component, AC corrosion can be reduced by adjusting the DC-component through the cathodic protection (CP) system.

1.2 An AC corrosion evaluation process (Figure 1) should include an analysis which results in development and implementation of a mitigation strategy, development of a monitoring strategy, and implementation of that monitoring strategy. If subsequent monitoring indicates risk of AC corrosion, the analysis as such should be reviewed, the mitigation strategy should be improved, or—in case values of the monitoring parameter are violated but it is documented that this does not lead to corrosion—the monitoring strategy can be modified.

1.3 The provisions of this standard should be applied under the direction of competent persons, who, by reason of knowledge of the physical sciences as well as the principles of engineering and mathematics, acquired by education and related practical experience, are qualified to engage in the practice of corrosion control of buried ferrous piping systems. Such persons may be registered professional engineers or persons recognized as corrosion specialists or CP specialists by NACE if their professional activities include suitable experience in external corrosion control on buried ferrous piping systems and AC interference and mitigation.

1.4 This standard should be used in conjunction with the references contained herein.

Section 2: Definitions

AC Corrosion: Corrosion initiated and propagating under the influence of alternating current.

AC Current Density (J_{AC}): Unit: A/m². The AC current density in a coating defect or in a coupon or probe used to simulate a coating defect of a certain area.

AC-Voltage (U_{AC}): Unit: V. Difference in AC potential between the pipeline and the earth. The AC voltage is the ultimate driving force for the AC current density at a coating defect—which may cause corrosion—or the AC current density at grounding devices (including galvanic anodes) installed for mitigation purposes. The AC voltage is not a constant value since:

- it will change over time primarily due to intermittent conditions in the AC power system, for instance because household power consumption is different during daytime and nighttime.

- it will change along the length of the pipeline since the induced voltage depends on characteristics of the pipeline, characteristics of the interfering AC power system, as well as the geometrical and geographical alignment.

AC Voltage Survey: Measurements along the pipeline designed to provide evidence of the actual level of AC pipe to electrolyte potentials or Coating Stress Voltage resulting from existing AC interference sources.