Standard Test Method

Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H₂S Environments

This NACE International standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. Its acceptance does not in any respect preclude anyone, whether he or she has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in conformance with this standard. Nothing contained in this NACE International standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by Letters Patent, or as indemnifying or protecting anyone against liability for infringement of Letters Patent. This standard represents minimum requirements and should in no way be interpreted as a restriction on the use of better procedures or materials. Neither is this standard intended to apply in all cases relating to the subject. Unpredictable circumstances may negate the usefulness of this standard in specific instances. NACE International assumes no responsibility for the interpretation or use of this standard by other parties and accepts responsibility for only those official NACE International interpretations issued by NACE International in accordance with its governing procedures and policies which preclude the issuance of interpretations by individual volunteers.

Users of this NACE International standard are responsible for reviewing appropriate health, safety, environmental, and regulatory documents and for determining their applicability in relation to this standard prior to its use. This NACE International standard may not necessarily address all potential health and safety problems or environmental hazards associated with the use of materials, equipment, and/or operations detailed or referred to within this standard. Users of this NACE International standard are also responsible for establishing appropriate health, safety, and environmental protection practices, in consultation with appropriate regulatory authorities if necessary, to achieve compliance with any existing applicable regulatory requirements prior to the use of this standard.

CAUTIONARY NOTICE: NACE International standards are subject to periodic review, and may be revised or withdrawn at any time in accordance with NACE technical committee procedures. NACE International requires that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of initial publication and subsequently from the date of each reaffirmation or revision. The user is cautioned to obtain the latest edition. Purchasers of NACE International standards may receive current information on all standards and other NACE International publications by contacting the NACE International FirstService Department, 15835 Park Ten Place, Houston, Texas 77084-5145 (telephone +1 281-228-6200).

Approved 2016-04-18
Revised 2016-03-29
Revised 2005-12-03
NACE International
15835 Park Ten Place
Houston, Texas 77084-5145
+1 281-228-6200

ISBN 1-57590-036-X
© 2016 NACE International
Foreword

This standard addresses the testing of metals for resistance to cracking failure under the combined action of tensile stress and corrosion in aqueous environments containing hydrogen sulfide (H\textsubscript{2}S). This phenomenon is generally termed sulfide stress cracking (SSC) when operating at room temperature and stress corrosion cracking (SCC) when operating at higher temperatures. In recognition of the variation with temperature and with different materials this phenomenon is herein called environmental cracking (EC). For the purposes of this standard, EC includes only SSC, SCC, and hydrogen stress cracking (HSC).

The primary purpose of this standard is to facilitate conformity in testing so that data from different sources can be compared on a common basis. Consequently, this standard aids the evaluation and selection of all types of metals and alloys, regardless of their form or application, for service in H\textsubscript{2}S environments. This standard contains methods for testing metals using tensile, bent-beam, C-ring, and double-cantilever-beam (DCB) test specimens. Certain ASTM(1) standard test methods have been listed as references for supplementary tests, creating a comprehensive test method standard. In addition, the four-point bent-beam test method is also referenced as a supplementary test.1,2 This standard is intended for use by laboratory and materials personnel to facilitate conformity in testing.

SSC of metals exposed to oilfield environments containing H\textsubscript{2}S was recognized as a materials failure problem by 1952. Laboratory data and field experience have demonstrated that even extremely low concentrations of H\textsubscript{2}S may be sufficient to lead to SSC failure of susceptible materials. In some cases, H\textsubscript{2}S can act synergistically with chlorides to produce corrosion and cracking (SSC and other mode) failures. However, laboratory and operating experiences have also indicated to materials engineers the optimum selection and specification of materials having minimum susceptibility to SSC. This standard covers test methods for SSC (at room temperature) and SCC (at elevated temperature), but other failure modes (e.g., hydrogen blistering, hydrogen-induced cracking [HIC], chloride stress corrosion cracking [SCC], pitting corrosion, and mass-loss corrosion) must also be considered when selecting materials for use in sour (H\textsubscript{2}S-containing) environments.

The need for better understanding of the variables involved in EC of metals in oilfield environments and better correlation of data has become apparent for several reasons. New design requirements by the oil and gas production industries call for higher-strength materials that, in general, are more susceptible to EC than lower-strength alloys. These design requirements have resulted in extensive development programs to obtain more resistant alloys and/or better heat treatments. At the same time, users in the petroleum refining and synthetic fuels industries are pushing present materials much closer to their mechanical limits.

Room-temperature (SSC) failures in some alloys generally are believed to result from hydrogen embrittlement (HE). When hydrogen is cathodically evolved on the surface of a metal (as by corrosion or cathodic charging), the presence of H\textsubscript{2}S (and other compounds, such as those containing cyanides and arsenic) tends to cause hydrogen atoms to enter the metal rather than to form hydrogen molecules that cannot enter the metal. In the metal, hydrogen atoms diffuse to regions of high triaxial tensile stress or to some microstructural configurations where they become trapped and decrease the ductility of the metal. Although there are several kinds of cracking damage that can occur in metals, delayed brittle fracture of metals resulting from the combined action of corrosion in an aqueous sulfide environment and tensile stresses (failure may occur at stresses far below the yield stress) is the phenomenon known as SSC.

In some cases, however, failure may be the result of localized anodic corrosion processes that may or may not involve hydrogen. In such instances, failure is the result of anodic stress corrosion cracking (SCC). Such failures have historically been termed SSC even though their cause may not be hydrogen.

(1) ASTM International (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959.
ANSI/NACE TM0177-2016

Measurement—Science and Engineering Applications." The standard is issued by NACE under the auspices of STG 32.

In NACE standards, the terms shall, must, should, and may are used in accordance with the definitions of these terms in the NACE Publications Style Manual. The terms shall and must are used to state a requirement, and are considered mandatory. The term should is used to state something good and is recommended, but is not considered mandatory. The term may is used to state something considered optional.
NACE International
Standard Test Method

Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments

Contents

1. General ... 1
2. Environmental Cracking Testing Variability ... 2
3. Reagents ... 3
4. Test Specimens and Material Properties ... 3
5. Test Vessels and Fixtures ... 4
6. Test Solutions .. 4
7. Testing at Elevated Temperature/Pressure .. 7
8. Method A—NACE Standard Tensile Test .. 11
10. Method C—NACE Standard C-Ring Test ... 14
11. Method D—NACE Standard Double Cantilever Beam Test .. 14
References .. 56

APPENDIX
Appendix A Safety Considerations in Handling H2S Toxicity (Nonmandatory) 58
Appendix B Explanatory Notes on Environmental Cracking Test Method (Nonmandatory) 59
Appendix C Determination of H2S Concentration in Test Solution by Iodometric Titration (Nonmandatory) ... 60
Appendix D Recommendations for Determining Mechanical Quality Assurance of Test Results for Method D (DCB Test) 28 (Nonmandatory) .. 63
Appendix E Recommended Method for Determining KI applied and KLIMIT for the Method D (DCB Test) 29 (Nonmandatory) ... 66

FIGURES
Figure 1: Flow Chart of Significant Factors Influencing the Selection of an NDE Inspection Method ... 8
Figure 2: Schematic Arrangement of Test Equipment for Method B—NACE Standard Bent-Beam Test, Method C—NACE Standard C-Ring Test, and Method D—NACE Standard Double-Cantilever-Beam Test .. 9
Figure 3: Tensile Test Specimens ... 12
Figure 4: Constant-Load (Dead-Weight) Device .. 14
Figure 5: Sustained-Load Devices .. 15
Figure 6: Applied Stress vs. Log (Time-to-Failure) .. 22
Figure 7: Dimensional Drawing of the Standard Bent-Beam Test Specimen 23
Figure 8: Typical Stressing Fixture for Bent-Beam Test Specimen .. 26
Figure 9: Dimensional Drawing of the C-Ring Test Specimen ... 33
Figure 10: Location of Hardness Impressions on DCB Specimen ... 42
Figure 11(a): Dimensional Drawing of the DCB Specimen ... 45

TABLES
Table 1
Table 2
Table 3
Table 4
Arm Displacements for API and Other Grade Oilfield Tubular Steels in Solution A and 100% H₂S...46
Table 5
Arm Displacement for API 5CT Grade C110 in Solution D and 7% H₂S ...46
Table 6
Suggested Arm Displacements for Selected Alloys and Strength Levels in Solution A and 100% H₂S...47
Table 7
Section 1: General

1.1 This standard covers the testing of metals subjected to tensile stresses for resistance to cracking failure in low-pH aqueous environments containing H$_2$S. Carbon and low-alloy steels are commonly tested for EC resistance at room temperature where SSC susceptibility is typically high. For other types of alloys, the correlation of EC susceptibility with temperature is more complicated.

1.2 This standard describes reagents, test specimens, and equipment to use; discusses base material and test specimen properties; and specifies the test procedures to follow. This standard describes four test methods:

 Method A—Standard Tensile Test
 Method B—Standard Bent-Beam Test
 Method C—Standard C-Ring Test
 Method D—Standard Double-Cantilever-Beam (DCB) Test

Sections 1 through 7 of this standard give general comments that apply to all four test methods. Sections 8 through 11 indicate the test method to follow for each type of test specimen. General guidelines to help to determine the suitability of each test method are given at the beginning of each test method description (Sections 8 through 11). Reporting of the test results is also discussed.

1.3 Metals can be tested for resistance to EC at temperatures and pressures that are either ambient (atmospheric) or elevated.

 1.3.1 For testing at ambient conditions, the test procedures can be summarized as follows: Stressed test specimens are immersed in acidified aqueous environments containing H$_2$S. Applied loads at convenient increments can be used to obtain EC data.

 1.3.2 For testing at temperatures higher than 27 °C (80 °F), at either atmospheric or elevated pressure, Section 7 describes an alternative test technique. All methods (A, B, C, and D) are adaptable to this technique.

1.4 This standard may be used for release or acceptance testing to ensure that the product meets a certain minimum level of EC resistance as prescribed in API[$^{(2)}$] Specification 5CT, ISO[$^{(3)}$] 11960, or as prescribed by the user or purchaser. This standard may also provide a quantitative measure of the product’s EC resistance for research or informational purposes. This rating may be based on:

 Method A—The highest no-failure uniaxial tensile stress in 720 hours.
 Method B—The statistically based critical stress factor (S_c) for a 50% probability of failure in 720 hours.
 Method C—The highest no-failure circumferential stress in 720 hours.
 Method D—The average K_{issc} (threshold stress intensity factor for SSC) for valid tests of replicate test specimens.

1.5 Safety Precautions: H$_2$S is an extremely toxic gas that must be handled with care. (See Appendix A [Nonmandatory]).

[$^{(3)}$] International Organization for Standardization (ISO), Chemin de Blandonnet 8, Case Postale 401, 1214 Vermier, Geneva, Switzerland.