American National Standard

for Utility Industry End Device Data Tables

Secretariat:

National Electrical Manufacturers Association

IEEE Number: IEEE Std 1377-2012
Measurement Canada Number: MC12.19-2013

Approved October 2, 2014

American National Standards Institute, Inc
NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA.administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health- or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association
1300 North 17th Street, Suite 900, Rosslyn, Virginia 22209

© 2015 National Electrical Manufacturers Association. All rights, including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American copyright conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America
Foreword (This Foreword is not part of American National Standard C12.19-2012.)

The ANSI C12.19 Standard provides a common data structure and descriptors for use in transferring data to and from utility End Devices, typically meters and head-ends. It has been developed with consideration of input from utilities, meter vendors, automated meter reading service companies, ANSI, Measurement Canada (for Industry Canada), NEMA, IEEE, Utilimetrics, NIST, SGIP, AEIC, and other interested parties nationally and internationally. This release of the Standard accommodates the concept of an advanced metering infrastructure (AMI), such as that identified by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy; the Smart Metering Initiative of the Ontario Ministry of Energy (Canada); and the stated requirements of Measurement Canada for the approval of a metering device for use in Canada.

ANSI C12.19 Tables are organized into functional groups known as Decades (nominally ten Tables per Decade). The ANSI C12.19 Standard contains up to 2040 “Standard Tables” that are fully described in the Standard. In addition, provisions were made for an additional 2040 “Manufacturers’ Tables” so that future innovations can be implemented utilizing the extension framework and mechanisms specified by the semantic model of this ANSI C12.19 Standard. These mechanisms facilitate the possibility of future inclusion of Manufacturer-defined Tables into future publications of the Standard. The Standard provides the means for the inclusion of Manufacturer-defined Tables into End Devices through designation of new Device Classes.

Another set of 2040 “Extended User-defined Tables” is available for End Devices that have a need for extremely low communications overhead and a high need for compaction of data. The User-defined Tables and the Extended User-defined Tables aggregate Elements of information from other Tables (Standard Tables Elements or Manufacturer Table Elements). These “Formal Elements” can be bundled into “virtual” Tables for transmission.

The Standard defines “Pending” attributes for Standard Tables, Manufacturer Tables, Standard Procedures, Manufacturer Procedures, and Extended User-defined Tables for use in applications such as End Device deferred programming and End Device firmware upgrades with activation and roll-back capabilities. The Pending Tables also facilitate Event-driven and synchronized actionable communication for use by enterprise systems (such as head-end systems) that communicate with a multitude of C12.19 devices in an AMI network of a Smart Grid.

The Standard’s flexibility presents a challenge to system developers, equipment vendors, utilities, and customers alike. System developers must continue to provide the capability of processing multiple data formats from the End Devices. The obvious advantage of ANSI C12.19 is that the semantic rules and semantic model of the Table structures can be published using machine-readable TDL/XML (structure) and EDL/XML (enterprise exchange data) Forms, in addition to the human readable (Standard Document) Forms. TDL/XML and EDL/XML, together with their derivative products (such as the human readable forms), are expected to be accessible through accredited registries via the Internet or other readily available means.

All registration authorities that recognize registrars are governed by ANSI C12 and IEEE SCC31. To be recognized, any registration authority is expected to adhere to the requirements specified in this Standard. See 0 (normative) “Universal Identifier.”

The ANSI C12.19 Standard provides mechanisms and identifies means to access the Table data. For this reason, it is expected that data acquisition AMI products should be capable of processing data from any End Device that follows the access rules defined by ANSI C12.19 and associated communication protocols (such as ANSI C12.18, ANSI C12.21, and ANSI C12.22) and services. The End Device’s Table of Contents is provisioned by ANSI C12.19 Table 0, “General Configuration Table.” Access to Standard Table 0, function limiting Tables (of the Decades), and information found in device control Tables can be combined with ANSI C12.19 Device Class information to gain the necessary information about “End Devices” for improved efficiency and interoperability.
Although this Standard covers a broad range of functionality, it does not follow that implementations of the Standard need to be large or complex. Implementers and users are encouraged to choose an appropriate functionality subset that is suitable for their needs. Therefore, it is very unlikely for any one End Device to embed all Tables or even the majority of the Tables described herein. Implementers and users are encouraged to deploy their desired functionalities using complete and consistent suites of Standard Tables from Standard Decades to the largest extent practical for the desired functionality of the device.

The third release of this Standard is a minor release in that it establishes a new baseline document that includes all of the corrections that were applied in Annex N, “Listing of Editorial Errors and Errors of Omission in ANSI C12.19-2008” of IEEE Std 1377™-2012.

The notable differences and corrections that exist in this release of the Standard relative to its predecessor ANSI C12.19-2008 are listed below:

1. Document is formatted according to IEEE Standards Template (Measurement Canada Version only).
2. New clause 1.1, “Purpose” was introduced to clause 1, “Scope.”
3. Introduced new references to clause 2, “Normative Reference”:
 b. ANSI C12.19, American National Standard for Utility Industry End Device Data Tables
 e. FERC-727-728-2008, Federal Energy Regulatory Commission, Survey on Demand Response, Time-Based Rate Programs/Tariffs and Advanced Metering Infrastructure Glossary, FERC-727 and FERC-728, OMB Control Nos. 1902-0214 & 1902-0213
 g. MC S-EG-02-2010, Measurement Canada Specifications for Approval of Physical Sealing Provisions for Electricity and Gas Meters, S-EG-02 (rev. 1)
 h. XHTML-2002, XHTML 1.0 The Extensible HyperText Markup Language (Second Edition), W3C Recommendation 26, 2000, revised 2002
 i. XML-2006, Extensible Markup Language (XML) 1.1 (Second Edition), W3C Recommendation 16
 k. XMLELIP-2008, XML Signature Syntax and Processing (Second Edition), W3C Recommendation 10
4. Moved references to URLs into page footnotes.
7. Removed numbers from the definitions in clause 3, “Definitions.”
9. Replaced all references to word “byte” with “Octet.”
11. Introduced allowance for GEN_CONFIG_TBL.MODEL_SELECT of 1 in clause 6.4.4, “SOURCE_SELECT_RCD”.
12. Swapped the terms “target” and “initiating” in clause 8.1.1, “Read Service.”
15. Corrected the TDL Type Definitions syntax in clause 8.2, “Pending Event Description.”
16. Added missing descriptions to TDL Element Descriptions in clause 8.2, “Pending Event Description.”
17. Corrected the TDL Element Descriptions true/false and high/low sense in clause 8.2, “List Management Description.”
18. Updated MODEL_SELECT in clause 9.1.1, “Table 00 General Configuration Table” to provide reference to the AEIC Guidelines Version 2 [AEICGL : 2010].
19. Updated the description of DEVICE_CLASS in clause 9.1.1, “Table 00 General Configuration Table” to indicate that the last arc tracks the value of MODEL_SELECT.
20. Updated the descriptions of STD_VERSION_NO and STD_REVISION_NO in clause 9.1.1, “Table 00 General Configuration Table.”
21. Corrected duplication in syntax of Table 04 Type Definitions in clause 9.1.5, “Table 04 Pending Status Table.”
22. Recast and updated descriptions of GPS COORDINATE_1, COORDINATE_2, and COORDINATE_3 in terms of definitely structured STRINGs in clause 9.1.7, “Table 06 Utility Information Table.”
23. Corrected and replaced the terms “off/on” with “disconnect/connect” in the definition of NEW_LEVEL in clause 9.1.10.22, “Procedure 21 Direct Load Control.”
24. Updated Decade 1 Data Description in clause 9.2, “Decade 1: Data Source Tables” to correctly reflect changes in MODEL_SELECT values.
25. Corrected UOM values above 220 in clause 9.2.3, “Table 12 Units of Measure Entry Table.”
26. Corrected ID_RESOURCE values above 23 in clause 9.2.3, “Table 12 Units of Measure Entry Table.”
27. Added security best practice recommendation to note in clause 9.5.3, “Table 42 Security Table.”
28. Added security best practice recommendation to note in clause 9.5.6, “Table 45 Key Table.”
29. Corrected description of TIME_ZONE_OFFSET in clause 9.6.4, “Table 53 Time Offset Table.”
30. Introduced SIG_ALGORITHM Element to facilitate the introduction of hash functions that comply with FIPS PUB 180-2 in clause 9.8.1, “Table 70 Log Dimension Limits Table.”
31. Introduced SIG_ALGORITHM Element to facilitate the introduction of hash functions that comply with FIPS PUB 180-2 in clause 9.8.2, “Table 70 Actual Log Limiting Table.”
32. Revised hash function algorithm descriptions in clause 9.8.9, “Table 78 End Device Program State Table” to reflect the changes made to ACT_LOG_TBL and ACT_LOG_TBL Elements SIG_ALGORITHM.
35. Corrected Table role and accessibility properties and reorganized descriptions in clause 9.16.4, “Table 153 Quality-of-service Incidents Table.”
36. Corrected Table role and accessibility properties in clause 9.16.5, “Table 154 Quality-of-service Log Table.”
37. Corrected Table role and accessibility properties in clause 9.17.4, “Table 163 One-way Data Table.”
38. Modified unit of measures in COMMODITY_OUTAGE DUTY_BFLD from seconds to minutes in clause 9.17.4, “Table 163 One-way Data Table.”
40. Revised BNF definition of constIdentifier in clause G.4, “Identifiers.”
42. Deleted BNF definitions of constType and constMember and associated example from clause G.12, “Constants” to reflect revisions to constIdentifier to clause G.4, “Identifiers.”
43. Revised BNF definitions of syntax from clause G.17, “Document Form Starting Production Rule” to reflect revisions to constIdentifier to clause G.4, “Identifiers.”
44. Corrected DTD definitions for object and Table in clause I.2.1.7, "<description> Child DTDs."
45. Inserted missing description for object in clause I.2.1.15, "<object> Attributes."
46. Inserted missing description for Table in clause I.2.1.16, "<table> Attributes."
47. Inserted missing descriptions for Table members in clause I.2.1.17, "<caption>, <col>, <thead>,
	<tfoot> and <tbody> Subelement usage of <table>."
48. Updated examples in clause I.2.1.18, "<description> Document Form."
49. Revised DTD definition of enumerator in clause I.2.1.25, "<enumerator> DTD (named)" to reflect
	revisions to constIdentifier to clause G.4, "Identifiers."
50. Deleted definition of <positional> in clause I.2.1.27, "<enumerator> DTD (named)" to reflect
	revisions to constIdentifier to clause G.4, "Identifiers."
51. Revised clause I.2.1.28, "Constant Enumerated Values DTD."
52. Revised clause, I.2.1.29, "<enumerator> DTD (Un-named)."
53. Revised clause I.2.1.30, "<enum> DTD."
54. Revised clause I.2.1.31 "<enum> Attributes."
55. Updated example in clause I.2.1.32, "<enum> Document Form."
56. Corrected definition of Element in clause I.2.1.39, "<element> DTD."
57. Corrected definition of else in clause I.2.1.55, "<else> DTD."
58. Corrected definition of switch in clause I.2.1.58, "<switch> DTD."
59. Corrected definition of case in clause I.2.1.62, "<case> DTD."
60. Corrected definitions in clause I.2.1.69, "<bitField> DTD."
61. Corrected definition of switch in clause I.2.1.84, "<switch> DTD."
62. Corrected definition of Table in clause I.2.1.108, "<table> DTD definition."
63. Corrected definition of packedRecord in clause I.2.1.114, "<packedRecord> DTD."
64. Corrected definition of bitField in clause I.2.1.116, "<bitField> DTD."
65. Corrected definition of tableName in clause I.3.1.5, "<description> Document Form."
66. Inserted copyright notice in clause I.3.1.5, "<description> Document Form."
67. Inserted documentation about schema constraints issues in clause I.3.1.6, “The Schema
	Constraints Problem.”
68. Corrected type mapping in clause I.4, “EDL XML Form Encoding of Final Element Values.”
69. Updated device class registration information in Annex J, “Universal Identifier.”
70. Corrected section numbering in Annex L, “Registering or Updating DEVICE CLASS OID.”

Members of ASC 12 SC 17 WG2 wish to thank and extend their deepest appreciation for the significant
contribution of the balloting members of IEEE P1377, the AEIC AMTIT members, NIST, and SGIP/PAP5
and SGIP/PAP6 members, who provided invaluable input into the making of this revision of the Standard.

Interpretation requests for, questions about, or suggestions for improvement to this Standard are
welcome. They should be sent to:

National Electrical Manufacturers Association
Vice President, Technical Services
1300 North 17th Street
Suite 900
Rosslyn, VA 22209

© 2015 National Electrical Manufacturers Association
The Secretariat of the Accredited Standards Committee on Electricity Metering, C12, is held by the National Electrical Manufacturers Association (NEMA) and the National Institute of Standards and Technology (NIST). At the time this Standard was processed and approved, the C12 Committee had the following members:

Tom Nelson, Chairman
Paul Orr, Secretary

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austin Energy</td>
<td>Herman Millican</td>
</tr>
<tr>
<td>Baltimore Gas & Electric Company</td>
<td>Jim Thurber</td>
</tr>
<tr>
<td>Center for Neighborhood Technology</td>
<td>Lawrence Kotewa</td>
</tr>
<tr>
<td>Duke Energy Company</td>
<td>Tim Morgan</td>
</tr>
<tr>
<td>EnerNex</td>
<td>Aaron F. Snyder</td>
</tr>
<tr>
<td>Florida Power & Light Co.</td>
<td>Jim DeMars</td>
</tr>
<tr>
<td>Future DOS R&D, Inc.</td>
<td>Avygdor Moise</td>
</tr>
<tr>
<td>GE Energy</td>
<td>Curt Crittenden</td>
</tr>
<tr>
<td>Georgia Power</td>
<td>Larry Barto</td>
</tr>
<tr>
<td>Itron, Inc.</td>
<td>Brent Cain</td>
</tr>
<tr>
<td>Landis+Gyr</td>
<td>John Voisine</td>
</tr>
<tr>
<td>Milbank Manufacturing</td>
<td>Shawn Glasgow</td>
</tr>
<tr>
<td>NIST</td>
<td>Tom Nelson</td>
</tr>
<tr>
<td>Oncor Group</td>
<td>Brad Johnson</td>
</tr>
<tr>
<td>Pacific Gas & Electric Company</td>
<td>D. Young Nguyen</td>
</tr>
<tr>
<td>Plexus</td>
<td>Dave Scott</td>
</tr>
<tr>
<td>Public Service Electric & Gas</td>
<td>David Ellis</td>
</tr>
<tr>
<td>Radian Research, Inc.</td>
<td>Tim Everidge</td>
</tr>
<tr>
<td>Schweitzer Engineering Labs, Inc.</td>
<td>Bob Hughes</td>
</tr>
<tr>
<td>Sensus Metering</td>
<td>George Steiner</td>
</tr>
<tr>
<td>Technology for Energy Corporation</td>
<td>Bill Hardy</td>
</tr>
<tr>
<td>Trilliant Networks, Inc.</td>
<td>Michel Veillette</td>
</tr>
<tr>
<td>Tucker Engineering Associates Inc.</td>
<td>Richard D. Tucker</td>
</tr>
<tr>
<td>Underwriters Laboratories Inc.</td>
<td>Ron Breschini</td>
</tr>
<tr>
<td>Watthour Engineering Co.</td>
<td>H.A. Wall</td>
</tr>
<tr>
<td>Xcel Energy EMC</td>
<td>Dan Nordell</td>
</tr>
</tbody>
</table>
The following members of Working Group 2 of Subcommittee 17 worked on the development of this revision of the Standard:

Avygdor Moise, Chairman
Aaron Snyder, Co-Vice Chairman
Kostas Tolios, Co-Vice Chairman
Michael Anderson, past Vice Chairman
Terry L. Penn, Editor
Paul Orr, Secretary

<table>
<thead>
<tr>
<th>Organizations Represented:</th>
<th>Name of Representative:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aclara PLS</td>
<td>David Haynes</td>
</tr>
<tr>
<td>American Electric Power</td>
<td>Maryam Larijani</td>
</tr>
<tr>
<td>Center for Neighborhood Technology</td>
<td>Lawrence Kotewa</td>
</tr>
<tr>
<td>Consumers Energy</td>
<td>David Jirikovic</td>
</tr>
<tr>
<td>DTE Energy</td>
<td>Kostas Tolios</td>
</tr>
<tr>
<td>Elster Metering</td>
<td>Jeff Richardson</td>
</tr>
<tr>
<td>Elster Solutions</td>
<td>Edward J. Beroset</td>
</tr>
<tr>
<td>EnerNex</td>
<td>Aaron F. Snyder</td>
</tr>
<tr>
<td>EnerNex</td>
<td>Erich Gunther</td>
</tr>
<tr>
<td>Future DOS R&D, Inc.</td>
<td>Avygdor Moise</td>
</tr>
<tr>
<td>GE Energy</td>
<td>Virginia Zinkowski</td>
</tr>
<tr>
<td>Itron, Inc.</td>
<td>Brent Cain</td>
</tr>
<tr>
<td>JECARRCO, LLC</td>
<td>Jack Carr</td>
</tr>
<tr>
<td>Landis+Gyr</td>
<td>Jeremiah Dole</td>
</tr>
<tr>
<td>Landis+Gyr</td>
<td>Michael Anderson</td>
</tr>
<tr>
<td>Oncor Group</td>
<td>Brad Johnson</td>
</tr>
<tr>
<td>Sensus Metering</td>
<td>Marc Keyes</td>
</tr>
<tr>
<td>Silver Springs Networks</td>
<td>Brad Gilbert</td>
</tr>
<tr>
<td>Southern Company</td>
<td>Terry L. Penn</td>
</tr>
<tr>
<td>Trilliant Networks, Inc.</td>
<td>Michel Veillette</td>
</tr>
<tr>
<td>Tucker Engineering Associates Inc.</td>
<td>Richard D. Tucker</td>
</tr>
</tbody>
</table>

This is a preview of "ANSI C12.19-2012". Click here to purchase the full version from the ANSI store.
Contents

Foreword ... ii

1 Overview ... 1
 1.1 SCOPE .. 1
 1.2 PURPOSE ... 1

2 Normative References .. 1

3 Definitions .. 3

4 General ... 11
 4.1 STANDARD TABLES ... 11
 4.1.1 Standard Tables Grouping .. 11
 4.1.2 Standard Tables Properties ... 12
 4.1.3 Standard Procedure Properties ... 13
 4.2 MANUFACTURER TABLES .. 13
 4.2.1 Manufacturer Tables Grouping .. 14
 4.2.2 Manufacturer Tables Properties .. 14
 4.2.3 Manufacturer Procedure Properties ... 14
 4.3 PACKED RECORD, BIT FIELD, AND ELEMENT PROPERTIES 15
 4.4 EXTENDED USER-DEFINED TABLES (EUDT) PROPERTIES 15

5 Syntax ... 15
 5.1 DESCRIPTIVE SYNTAX .. 15

6 Special Data Types .. 16
 6.1 CHARACTER SET SELECTION .. 16
 6.2 NONINTEGER FORMATS .. 17
 6.2.1 STRING Numbers .. 17
 6.3 DATE AND TIME FORMATS .. 18
 6.3.1 HTIME_DATE, LTIME_DATE, STIME_DATE, TIME, STIME, HTIME Types 19
 6.3.2 RDATE Type .. 23
 6.3.3 DATE Type ... 25
 6.4 COMMON TABLE OR PROCEDURE IDENTIFIER FORMATS 26
 6.4.1 TABLE_IDA_BFLD Bit Field ... 26
 6.4.2 TABLE_IDB_BFLD Bit Field ... 27
 6.4.3 TABLE_IDC_BFLD Bit Field ... 27
 6.4.4 SOURCE_SELECT_RCD .. 28

7 Compliance and Compatibility .. 29
 7.1 COMPLIANCE ... 29
 7.2 BACKWARD AND FORWARD COMPATIBILITY ... 30

8 Table Transportation Issues .. 30
 8.1 MINIMUM SERVICES AND PARAMETERS ... 30
 8.1.1 Read Service ... 30
 8.1.2 Write Service .. 32
 8.1.3 Partial Table Access Using the Index/Element-count Method 33
 8.1.4 Partial Table Access Using the Offset/Octet-count Method 35
 8.1.5 Index Count Access Method Examples ... 36
 8.2 PENDING EVENT DESCRIPTION ... 36
 8.3 LIST MANAGEMENT DESCRIPTION ... 39

9 Tables ... 41

© 2015 National Electrical Manufacturers Association
9.1 DECADE 0: GENERAL CONFIGURATION TABLES .. 41
9.1.1 Table 00 General Configuration Table .. 41
9.1.2 Table 01 General Manufacturer Identification Table 47
9.1.3 Table 02 Device Nameplate Table ... 48
9.1.4 Table 03 End Device Mode Status Table .. 56
9.1.5 Table 04 Pending Status Table ... 58
9.1.6 Table 05 Device Identification Table .. 60
9.1.7 Table 06 Utility Information Table ... 60
9.1.8 Table 07 Procedure Initiate Table .. 63
9.1.9 Table 08 Procedure Response Table ... 68
9.1.10 Standard Procedures ... 72
9.2 DECADE 1: DATA SOURCE TABLES .. 89
9.2.1 Table 10 Data Source Dimension Limits Table .. 90
9.2.2 Table 11 Actual Data Sources Limiting Table .. 92
9.2.3 Table 12 Units of Measure Entry Table .. 94
9.2.4 Table 13 Demand Control Table .. 102
9.2.5 Table 14 Data Control Table .. 104
9.2.6 Table 15 Constants Table ... 105
9.2.7 Table 16 Source Definition Table .. 111
9.2.8 Table 17 Transformer Loss Compensation Table 112
9.3 DECADE 2: REGISTER TABLES ... 114
9.3.1 Table 20 Register Dimension Limits Table ... 114
9.3.2 Table 21 Actual Register Limiting Table ... 117
9.3.3 Table 22 Data Selection Table .. 119
9.3.4 Table 23 Current Register Data Table .. 120
9.3.5 Table 24 Previous Season Data Table ... 122
9.3.6 Table 25 Previous Demand Reset Data Table .. 123
9.3.7 Table 26 Self-read Data Table .. 123
9.3.8 Table 27 Present Register Selection Table .. 125
9.3.9 Table 28 Present Register Data Table ... 126
9.4 DECADE 3: LOCAL DISPLAY TABLES ... 127
9.4.1 Table 30 Display Dimension Limits Table .. 127
9.4.2 Table 31 Actual Display Limiting Table .. 128
9.4.3 Table 32 Display Source Table ... 130
9.4.4 Table 33 Primary Display List Table ... 130
9.4.5 Table 34 Secondary Display List Table ... 132
9.5 DECADE 4: SECURITY TABLES ... 133
9.5.1 Table 40 Security Dimension Limits Table ... 134
9.5.2 Table 41 Actual Security Limiting Table .. 135
9.5.3 Table 42 Security Table ... 135
9.5.4 Table 43 Default Access Control Table .. 137
9.5.5 Table 44 Access Control Table ... 138
9.5.6 Table 45 Key Table .. 140
9.5.7 Table 46 Reserved ... 140
9.5.8 Table 47 Reserved ... 140
9.6 DECADE 5: TIME AND TIME-OF-USE (TOU) TABLES 140
9.6.1 Table 50 Time and Time-of-use (TOU) Dimension Limits Table 142
9.6.2 Table 51 Actual Time and Time-of-use (TOU) Limiting Table 145
9.6.3 Table 52 Clock Table ... 148
9.6.4 Table 53 Time Offset Table .. 149
9.6.5 Table 54 Calendar Table ... 150
9.6.6 Table 55 Clock State Table .. 156
9.6.7 Table 56 Time Remaining Table .. 157
9.6.8 Table 57 Precision Clock State Table .. 158
9.7 DECADE 6: LOAD PROFILE TABLES ... 158

© 2015 National Electrical Manufacturers Association
Table 60 Load Profile Dimension Limits Table .. 159
Table 61 Actual Load Profile Limiting Table .. 163
Table 62 Load Profile Control Table .. 167
Table 63 Load Profile Status Table .. 170
Table 64 Load Profile Data Set One Table ... 173
Table 65 Load Profile Data Set Two Table .. 177
Table 66 Load Profile Data Set Three Table .. 179
Table 67 Load Profile Data Set Four Table ... 181

9.8 DECADE 7: HISTORY LOG AND EVENT LOG TABLES 183
9.8.1 Table 70 Log Dimension Limits Table ... 185
9.8.2 Table 71 Actual Log Limiting Table .. 188
9.8.3 Table 72 Events Identification Table .. 190
9.8.4 Table 73 History Log Control Table ... 191
9.8.5 Table 74 History Log Data Table ... 192
9.8.6 Table 75 Event Log Control Table .. 195
9.8.7 Table 76 Event Log Data Table ... 196
9.8.8 Table 77 Event Log and Signatures Enable Table 199
9.8.9 Table 78 End Device Program State Table .. 201
9.8.10 Table 79 Event Counters Table .. 205

9.9 DECADE 8: USER-DEFINED TABLES (UDTs) ... 205
9.9.1 Table 80 User-defined Tables (UDTs) Dimension Limits Table 206
9.9.2 Table 81 Actual User-defined Tables (UDTs) Limiting Table 207
9.9.3 Table 82 User-defined Tables (UDTs) List Table 209
9.9.4 Table 83 User-defined Tables (UDTs) Selections Table 210
9.9.5 Table 84 User-defined Table (UDT) Zero .. 211
9.9.6 Table 85 User-defined Table (UDT) One ... 211
9.9.7 Table 86 User-defined Table (UDT) Two .. 212
9.9.8 Table 87 User-defined Table (UDT) Three ... 212
9.9.9 Table 88 User-defined Table (UDT) Four ... 213
9.9.10 Table 89 User-defined Table (UDT) Five .. 213

9.10 DECADE 9: TELEPHONE CONTROL TABLES .. 214
9.10.1 Table 90 Telephone Dimension Limits Table ... 214
9.10.2 Table 91 Actual Telephone Limiting Table .. 217
9.10.3 Table 92 Telephone Global Parameters Table .. 219
9.10.4 Table 93 Telephone Call Originate Parameters Table 220
9.10.5 Table 94 Telephone Call Originate Schedule Table 222
9.10.6 Table 95 Telephone Call Answer Parameters .. 225
9.10.7 Table 96 Originating Telephone Call Purpose .. 226
9.10.8 Table 97 Last Telephone Call Status ... 227
9.10.9 Table 98 Telephone Call Originate Status ... 229

9.11 DECADE 10: UNASSIGNED .. 230

9.12 DECADE 11: LOAD CONTROL AND PRICING TABLES 230
9.12.1 Table 110 Load Control Dimension Limits Table 231
9.12.2 Table 111 Actual Load Control Limiting Table 233
9.12.3 Table 112 Load Control Status ... 235
9.12.4 Table 113 Load Control Configuration .. 237
9.12.5 Table 114 Load Control Schedule ... 238
9.12.6 Table 115 Load Control Conditions .. 241
9.12.7 Table 116 Prepayment Status ... 244
9.12.8 Table 117 Prepayment Control ... 245
9.12.9 Table 118 Billing Control .. 246

9.13 DECADE 12: RESERVED .. 248

9.14 DECADE 13: RESERVED ... 248

9.15 DECADE 14: EXTENDED USER-DEFINED TABLES (EUDTs) 248
9.15.1 Table 140 Extended User-defined Tables (EUDTs) Function Limiting Table 249
Annex I

I.2.32
I.2.31
I.2.30
I.2.28
I.2.26
I.2.25
I.2.24
I.2.23
I.2.20
I.2.19
I.2.18
I.2.17
I.2.16
I.2.15
I.2.14
I.2.13
I.2.12
I.2.11
I.2.10
I.2.9
I.2.8
I.2.7
I.2.6
I.2.5
I.2.4
I.2.3
I.2.2
I.2.1
I.2

TDL XML File Format Of The TDL Document

Overview of the TDL/EDL

- Procedures
- Tables
- Constants
- Set Type
- Array Type
- Packed Record Type
- Single-Line (SLM) Math Expressions
- Properties
- Document Form Starting Production Rule

Annex H

DATE-TIME ELEMENTS CONVERSION ALGORITHM (TM_FORMAT=3 AND TM_FORMAT=4)
I.3	EDL XML Format	..	445
I.3.1	Overview	..	445
I.3.2	<edl> Root Element	..	445
I.3.3	<description> Element (Child of <edl>)	..	445
I.3.4	Pseudo Element Names	..	447
I.3.5	Resolving Second Edition XML Schema Constraints	..	448
I.3.6	${[if-switch-clause]} Element	..	450
I.3.7	<defaultSet> Element (Child of <edl>)	..	450
I.3.8	${[limitingTableName]} Element (Child of <defaultSet>)	..	453
I.3.9	<data> Element (Child of <edl>)	..	454
I.3.10	${[tableName]} Element	..	454
I.3.11	${[elementName]} Element	..	455
I.3.12	<entry> Element	..	456
I.3.13	<pendingHeader> Element	..	458
I.4	EDL XML Form Encoding of Final Element Values	..	459

Annex J (normative) UNIVERSAL IDENTIFIER .. 461

Annex K (informative) ALGORITHMS FOR THE CONVERSION OF TABLE ELEMENT VALUES TO ENGINEERING UNITS

K.1 Locating Conversion Factors from Decade 1 .. 462
K.2 De-normalizing Interval Data Elements .. 465
K.3 Converting to Engineering Units at the Point of Metering .. 466
K.4 Converting to Engineering Units at the Point of Delivery .. 468
K.5 Assigning Engineering Units .. 468
K.6 Assigning Fundamental Engineering Units .. 468
K.7 Table Value to Engineering Units Conversion: An Example .. 469

Annex L (informative) REGISTERING OR UPDATING DEVICE CLASS OID .. 472

L.1 Binding a Device Class to End Device Operating Model .. 472
L.2 End Devices Referencing the Standard’s Device Class .. 475
L.3 Practical Examples and Use-cases ... 475
 L.3.1 Examples: Initial Registration Condition—An Empty TDL ... 475
 L.3.2 Examples: Initial Registration Conditions—Nonempty TDL .. 481

Annex M (informative) BIBLIOGRAPHY ... 489

Annex N (informative) HISTORICAL BACKGROUND .. 490

Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Possible Combinations of FLC, FLC+1, and Decade Tables</td>
<td>12</td>
</tr>
<tr>
<td>4-2</td>
<td>Default Standard Tables Properties</td>
<td>13</td>
</tr>
<tr>
<td>4-3</td>
<td>Default Standard Tables 7, 8, and Procedures Properties</td>
<td>13</td>
</tr>
<tr>
<td>4-4</td>
<td>Default Manufacturer Tables Properties</td>
<td>14</td>
</tr>
<tr>
<td>4-5</td>
<td>Default Manufacturer Procedures Properties</td>
<td>15</td>
</tr>
<tr>
<td>E-1</td>
<td>Detailed Signature Computation Algorithm</td>
<td>340</td>
</tr>
<tr>
<td>G-1</td>
<td>Octet Bit Ordering</td>
<td>351</td>
</tr>
<tr>
<td>G-2</td>
<td>Multibyte Ordering</td>
<td>351</td>
</tr>
<tr>
<td>G-3</td>
<td>Subtypes and Bit Field Bit Ordering</td>
<td>372</td>
</tr>
<tr>
<td>G-4</td>
<td>Set Octets and Bit Ordering</td>
<td>373</td>
</tr>
<tr>
<td>G-5</td>
<td>Single-dimension Array Ordering</td>
<td>374</td>
</tr>
</tbody>
</table>
Figure I-1 Production of the Document Form (Document Format of Section 9.0, “Tables”) from the TDL XML File ... 384
Figure I-2 Production of Exchange Data Language (EDL) Validation Schema File from a TDL XML File .. 384
Figure I-3 Production of the Document Form (Document Format of Annex C, “Default Sets for Decade Tables”) from the EDL XML Default Sets File .. 384
Figure I-4 Production of Final Element Indices (Document Format of Annex D, “Indices for Partial Table Read/Write Access”) from a TDL XML File .. 385
Figure I-5 From XML to AMI Application: the Pathways for Using C12.19 Standard- and Manufacturer-defined TDL/XML Tables for Documentation, EDL, and AMI Application Processing ... 386
Figure K-1 A Typical Electricity Meter Installation .. 467
Figure L-1 A Registered End Device Instance .. 473
Figure L-2 Device Class Re-registration Decision-making Process Flow ... 474
1 Overview

1.1 SCOPE

This Standard defines a Table structure for utility application data to be passed between an End Device and any other device. It neither defines device design criteria nor specifies the language or protocol used to transport that data. The Tables defined in this Standard represent a data structure that shall be used to transport the data, not necessarily the data storage format used inside the End Device.

1.2 PURPOSE

The Utility Industry has a need for a Standard that provides an interoperable “plug-and-play” environment for field metering devices. The purpose of this Standard is to define the framework and data structures for transporting Utility End Device data to and from End Devices and for use by enterprise systems.

This Standard is intended to accommodate the concept of an advanced metering infrastructure, such as that identified by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy; the Smart Metering Initiative of the Ontario Ministry of Energy (Canada); and the stated requirements of Measurement Canada for the approval of a metering device for use in Canada.

This Standard is to provide a uniform, structured, and adaptive data model, such that Utility End Devices and ancillary devices (e.g., home appliances and communication technology) can operate in a “plug-and-play” and multisource enterprise Advanced Metering Infrastructure (AMI) environment.

This Standard extends the definitions provided by IEEE Std 1377-1998 to include provisions for enterprise-level asset management, data management, and uniform data exchange capability, through the use of common and managed Extensible Markup Language (XML)/Table Definition Language (TDL) and XML/Exchange Data Language (EDL) End Device Class models.

2 Normative References

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

ANSI C12.19, American National Standard for Utility Industry End Device Data Tables

¹ AEIC publications are available from The Association of Edison Illuminating Companies (http://www.aeic.org/). This document is available from http://www.aeic.org/meter_service/AEICSmartGridStandardv2.11-19-10.pdf.
² ANSI publications are available from the American National Standards Institute (http://www ANSI.org/).