

ANSI/IEC 60974-1: 2008

American National Standard for Arc Welding Equipment

Part 1: Welding Power Sources

This is a preview of "ANSI/IEC 60974-1: 20". Click here to purchase the full version from the ANSI stor	re.

Approved as an American National Standard ANSI Approval Date: December 30, 2008 Adoption of IEC 60974-1, Ed. 3 (2005)

ANSI/IEC 60974-1: 2008

Arc Welding Equipment— Part 1: Welding Power Sources

Published by

National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, Virginia 22209

www.nema.org

© Copyright 2008 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions. These materials are subject to copyright claims of IEC, ANSI, and NEMA. Not for resale. No part of this publication may be reproduced in any form, including an electronic retrieval system, without the prior written permission of NEMA. All requests pertaining to the ANSI/NEMA Standard should be submitted to NEMA.

NOTICE AND DISCLAIMER

The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

The National Electrical Manufacturers Association (NEMA) standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. NEMA does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.

AMERICAN NATIONAL STANDARD

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by

National Electrical Manufacturers Association

1300 North 17th Street, Rosslyn, VA 22209

© Copyright 2008 by National Electrical Manufacturers Association

All rights reserved including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Printed in the United States of America

This is a preview of "ANSI/IEC 60974-1: 20". Click here to purchase the full version from the ANSI store.
This page intentionally left blank.
Tino page intentionally left blank.

- 5 -

CONTENTS

1	Scope	21
2	Normative references	21
3	Terms and definitions	23
4	Environmental conditions	30
5	Tests	30
6	Protection against electric shock	33
7	Thermal requirements	44
8	Abnormal operation	49
9	Thermal protection	50
10	Connection to the input supply network	52
11	Output	58
12	Control circuits	64
13	Hazard reducing device	65
14	Mechanical provisions	66
15	Rating plate	69
16	Adjustment of the output	74
17	Instructions and markings	75
Anr	nex A (informative) Nominal voltages of supply networks	80
Anr	nex B (informative) Example of a combined dielectric test	81
Anr	nex C (normative) Unbalanced load in case of a.c. tungsten inert-gas welding power	
	sources	
	nex D (informative) Extrapolation of temperature to time of shutdown	
	nex E (normative) Construction of supply circuit terminals	
	nex F (informative) Cross-reference to non-SI units	88
Anr	nex G (informative) Suitability of supply network for the measurement of the true r.m.s. value of the supply current	89
Anr	nex H (informative) Plotting of static characteristics	90
Anr	nex I (normative) Test methods for a 10 Nm impact	91
Anr	nex J (normative) Thickness of sheet metal for enclosures	93
Anr	nex K (informative) Examples of rating plates	95
Anr	nex L (informative) Graphical symbols for arc welding equipment	99
Anr	nex M (informative) Efficiency	122
Anr	nex N (normative) Primary leakage current measurement	123
Fig	ure 1 – Measurement of leakage current of welding circuit	41
Fig	ure 2 – Measuring network for primary leakage current	43
Fig	ure 3 – Measurement of peak values	61
Fig	ure 4 – Principle of the rating plate	70

-6-

Figure 5 – Carbon monoxide precautionary marking	78
Figure B.1 – Combined high-voltage transformers	81
Figure C.1 – Voltage and current during a.c. tungsten inert-gas welding	82
Figure C.2 – Unbalanced voltage during a.c. tungsten inert-gas welding	83
Figure C.3 – AC welding power source with unbalanced load	84
Figure I.1 – Test set-up	91
Figure K.1 – Single-phase transformer	95
Figure K.2 – Three-phase rotating frequency converter	96
Figure K.3 – Subdivided rating plate: single-/three-phase transformer rectifier	97
Figure K.4 – Engine-generator-rectifier	98
Figure L.1 – Input voltage power switch	. 120
Figure L.2 – Arc force control potentiometer	. 120
Figure L.3 – Remote receptacle and selector switches	. 120
Figure L.4 – Terminals with inductance selector for MIG/MAG welding	. 120
Figure L.5 – Process switch (MMA, TIG, MIG)	
Figure L.6 – Selector switch on AC/DC equipment	. 121
Figure L.7 – Panel indicator lights (overheat, fault, arc striking, output voltage)	. 121
Figure L.8 – Setting pulsing parameters using digital display	. 121
Figure N.1 – Diagram for leakage current meaurement at operating temperature for single-phase connection of appliances other than those of class II	
Figure N.2 – Diagram for leakage current meaurement at operating temperature for three-phase connection of appliances other than those of class II	. 124
Figure N.3 – Diagram for leakage current measurement at operating temperature for single-phase connection of class II appliances	. 125
Figure N.4 – Diagram for leakage current measurement at operating temperature for three-phase connection of class II appliances	. 127

-7-

Table 1 – Minimum clearances for overvoltage category III	34
Table 2 – Minimum creepage distances	36
Table 3 – Insulation resistance	37
Table 4 – Dielectric test voltages	37
Table 5 – Minimum distance through insulation	41
Table 6 – Limits of temperature rise for windings, commutators and slip-rings	47
Table 7 – Limits of temperature rise for external surfaces	47
Table 8 – Cross-section of the output short-circuit conductor	50
Table 9 – Current and time requirements for protective circuits	54
Table 10 – Minimum cross-sectional area of the external protective copper conductor	54
Table 11 – Verification of continuity of the protective bonding circuit	55
Table 12 – Pull	56
Table 13 – Summary of allowable rated no-load voltages	60
Table 14 – Hazard reducing device requirements	65
Table E.1 – Range of conductor dimensions to be accepted by the supply circuit terminals	86
Table E.2 – Spacing between supply circuit terminals	87
Table F.1 – Cross-reference for mm ² to American wire gauge (AWG)	88
Table F.2 – Cross reference for kW to horsepower (hp)	88
Table I.1 – Mass of the free fall weight and height of the free fall	92
Table J.1 – Minimum thickness of sheet metal for steel enclosures	93
Table J.2 – Minimum thickness of sheet metal for enclosures of aluminium, brass or	
copper	
Table L.1 – Letters used as symbols	100

-8-

FOREWORD FOR U.S. ADOPTION

This American National Standard is an adoption of IEC 60974-1 edition 3, *Arc Welding Equipment – Part 1: Welding power sources*, and was developed and approved in accordance with procedures set forth by the American National Standards Institute. It is envisioned that this document will ultimately supersede ANSI/UL 60974-1, which was an adoption of IEC 60974-1, edition 2 and its amendment 1.

This standard contains all the original text as-is from IEC 60974-1, edition 3, in addition to a number of U.S. Differences to the IEC standard that were identified by Accredited Standards Committee W1, Requirements for Apparatus Designed for Use in Arc Welding, Plasma Arc Cutting, and Allied Processes. Each U.S. Difference is found both in a compilation of U.S. differences following this foreword, and inserted in the appropriate place(s) in the standard relating to the difference. Each insertion is in red text and is marked by three lines on its left (two thin, one thick). Each Difference is identified with the following format:

[Clause/Subclause Number]DV[Number of Difference for the Given Clause/Subclause]

Following this format, the example 17.1DV.3 signifies that it is the third U.S. Difference to subclause 17.1.

Suggestions for the improvement of this standard are welcome and should be submitted to the Secretariat of Accredited Standards Committee W1 as follows:

Greg Winchester, ASC W1 Secretary c/o National Electrical Manufacturers Association 1300 North 17th Street, Suite 1752 Rosslyn, VA 22209 Fax 703-841-3399 Email gre_winchester@nema.org

This standard was processed and approved by the Accredited Standards Committee W1. Committee approval does not necessarily imply that all Committee members voted for its approval. At the time this standard was published, Accredited Standards Committee W1 consisted of the following members:

-9-

John Freudenberg, Chairman Wayne Hoffman, Vice Chairman Greg Winchester, Secretary		
Organization Represented	Name of Representative	
American Welding Society	Andrew Davis – principal Dick Holdren – alternate	
CenterLine (Windsor) Limited	David Beneteau	
CSA International	Andrew Krumins	
ESAB Welding and Cutting	Charles Aimar	
Hypertherm Inc.	Tony Zeller – principal Bill Lynn – alternate	
Lincoln Electric Company	Frank Stupczy – principal Gary Mikitin – alternate	
Miller Electric Manufacturing Company	David Werba – principal Terry Christianson – alternate	
Northeast Product Safety Society	John Freudenberg	
Wayne Hoffman – Consultant / U.S. Technical Advisor, IEC TC 26	Wayne Hoffman	

The effective date for all new product submittals to this Standard is three (3) years after the publication date of this Standard. This effective date is established by the ANSI Accredited Standards Committee W1 and is not part of this Standard. This Standard cancels and replaces the first edition of ANSI/UL 60974-1 (published March 17, 2005) on the effective date.

The requirements in this Standard should be used for new product submittals made after the publication date of this Standard. If this Standard is used, a product will be evaluated under all of the requirements of this Standard. If a product within the scope of this Standard was listed to ANSI/UL 60974-1 or ANSI/UL 551, compliance with all the requirements in this Standard will be required as a condition of continued Listing after June 30, 2023.

-18 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ARC WELDING EQUIPMENT -

Part 1: Welding power sources

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60974-1 has been prepared by IEC technical committee 26: Electric welding.

This third edition cancels and replaces the second edition published in 1998, amendment 1 (2000) and amendment 2 (2003) and constitutes a technical revision.

The significant changes with respect to the previous edition are the following:

- The scope includes relationship to other parts of IEC 60974.
- Environmental conditions were changed (see 4.a and 4.e).
- Conformity of components is given (see 5.3).
- Sequence of type test was changed (see 5.4).
- More precise requirements for measuring the no-load voltage during routine test are given (see 5.5d).

-19-

- Creepage values for printed circuit boards are implemented (see Table 2).
- Requirements for enclosures are changed (see 6.2.1).
- Requirements for primary leakage current are included (see 6.3.7 and Annex N).
- Requirements for engine driven power sources are changed (see 7.1.2 and 7.3.2).
- Requirements for supply circuit terminals are changed (see 10.4.3 and 10.4.4).
- Requirements for cable anchorage are changed (see 10.5).
- Requirements for coupling devices are changed (see 10.9).
- Standard characteristic for plasma welding is included (11.2.6).
- Requirements for welding cables are added (see 11.7).
- Requirements for plastic material used as enclosure materials are added (see 14.2.1).
- Requirements for manual handling are added (see 14.3.2).
- Taken care of existing ISO symbols and labels (see 15.3 and 17.2).

The text of this standard is based on the following documents:

FDIS	Report on voting
26/307/FDIS	26/311/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 60974 consists of the following parts, under the general title Arc welding equipment:

- Part 1: Welding power sources
- Part 2: Liquid cooling systems
- Part 3: Arc striking and stabilizing devices
- Part 4: Safety, maintenance and inspection of arc welding equipment in use 1
- Part 5: Wire feeders
- Part 6: Limited duty manual metal arc welding power sources
- Part 7: Torches
- Part 8: Gas consoles for welding and plasma cutting systems
- Part 10: Electromagnetic compatibility (EMC) requirements
- Part 11: Electrode holders
- Part 12: Coupling devices for welding cables
- Part 13: Terms 1

¹ Under consideration.

- 20 -

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

ForewordDV.1 Modify the foreword by adding the following:

The numbering system in this standard uses a space instead of a comma to indicate thousands and uses a comma instead of a period to indicate a decimal point. Examples: 1 000 means 1,000; 1,01 means 1.01.

-21-

ARC WELDING EQUIPMENT -

Part 1: Welding power sources

1 Scope

This part of IEC 60974 is applicable to power sources for arc welding and allied processes designed for industrial and professional use, and supplied by a voltage not exceeding that specified in Table 1 of IEC 60038, or driven by mechanical means.

This part of IEC 60974 specifies safety and performance requirements of welding power sources and plasma cutting systems.

This part of IEC 60974 is not applicable to welding power sources for manual metal arc welding with limited duty operation which are designed mainly for use by laymen.

This part of IEC 60974 is not applicable to testing of power sources during periodic maintenance or after repair.

NOTE 1 Typical allied processes are electric arc cutting and arc spraying.

NOTE 2 This part of IEC 60974 does not include electromagnetic compatibility (EMC) requirements.