Errata to
ANSI/NETA ATS-2017
Standard for Acceptance Testing Specifications for
Electrical Power Equipment and Systems

Issued by the

NETA Standards Review Council

Of the

InterNational Electrical Testing Association

Correction sheet

Issued May 21, 2017

Copyright © 2017 by the InterNational Electrical Testing Association. All rights reserved. Published 2017.

Printed in the United States of America.

This correction sheet may be freely reproduced and distributed in order to maintain the utility and currency of the underlying Standard. This correction sheet may not be sold, licensed or otherwise distributed for any commercial purposes whatsoever. The content of this correction sheet may not be modified.
7.2.2 Transformers, Liquid-Filled
7.2.2.B.7
Perform sweep frequency response analysis tests should be marked (*) as optional.
Original text incorrectly had the SFRA test as mandatory.

7.2.2 Transformers, Liquid-Filled
7.2.2.D.5
Change text to read investigate bushing power factor values that vary by more than 50%.
Original text is incorrectly shown as 150%.

Cables, Medium- and High-Voltage
7.3.3.B.4
TDR measurements should be marked (*) as optional.
Original text incorrectly had the TDR test as mandatory.

Circuit Breakers, Vacuum, Medium-Voltage
7.6.3.B.5 (electrical test)
7.6.3.D.5 (test result)
Dynamic contact resistance test.
Delete requirement and expected test results section – this test was not intended for medium-voltage vacuum breakers.
Errata to
ANSI/NETA ATS-2017
Standard for Acceptance Testing Specifications for
Electrical Power Equipment and Systems

Issued by the
NETA Standards Review Council
Of the
InterNational Electrical Testing Association

Correction sheet
Issued January 23, 2019
3. Qualifications of Testing Organization and Personnel

3.1 Testing Organization

3.3.1.4

Section deleted per 3.2 Commercial terms and conditions of the ANSI Essential Requirements.

3. Qualifications of Testing Organization and Personnel

3.1 Testing Organization

3.3.1.5

With deletion of original section 3.3.1.4 text, section 3.3.1.5 becomes 3.3.1.4.
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Copyright Information and Alteration of Content

ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems, 2017 edition, (ANSI/NETA ATS-2017) is protected under the copyright laws of the United States, and all rights are reserved. Further, the ANSI/NETA ATS-2017 may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the ANSI/NETA ATS-2017 provided ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems are clearly identified in writing as the source of all such uses or reproductions.

Section 7 of the ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems may be reproduced and used on a “cut and paste” basis for the particular type of equipment to be tested.

The following sections of the ANSI/NETA Standard for Acceptance Testing Specifications for Electrical Power Equipment and Systems must be incorporated by reference as part of any subsection:

3. Qualifications of Testing Organization and Personnel
 3.1 Testing Organization
 3.2 Testing Personnel
4. Division of Responsibility
 4.1 The Owner’s Representative
 4.2 The Testing Organization
5. General
 5.1 Safety and Precautions
 5.2 Suitability of Test Equipment
 5.3 Test Instrument Calibration
 5.4 Test Report
 5.5 Test Decal

The purchaser is required to include the above sections with any section(s) of 7.

© Copyright 2017
InterNational Electrical Testing Association
3050 Old Centre Avenue, Suite 102
Portage, MI 49024
E-mail: neta@netaworld.org • Web: www.netaworld.org
Standards Review Council

These specifications were submitted for public comment and reviewed by the NETA Standards Review Council.

James G. Cialdea
Timothy J. Cotter
Lorne J. Gara
Roderic L. Hageman
Leif Hoegberg
Daniel D. Hook
David G. Huffman
Ralph E. Patterson
Alan D. Peterson
Melissa A. Richard
Kristen K. Wicks
Ronald A. Widup

Ballot Pool Members
for

Ken Bassett Andrew Kobler Mark Siira
Tom Bishop Korey Kruse Jeremy Smith
Scott Blizard Mark Lautenschlager Richard Sobhraj
Michael Bowers Eric Nation Charles Sweetser
John Cadick Steve Park Adis Talovic
Michel Castonguay Lee Perry Alan Turpen
James Dollard Tony Perry Gary Walls
Peter Green Mose Ramieh John White
James Harvey Diego Robalino Jean-Pierre Wolff
Kerry Heid Eddie Roland Chris Zavadlov
Randall Sagan
NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.
The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA developed specifications for the acceptance of new electrical apparatus prior to energization and for the maintenance of existing apparatus to determine its suitability to remain in service. The first NETA Acceptance Testing Specifications for Electrical Power Equipment and Systems was produced in 1972. Upon completion of this project, the NETA Technical Committee began work on a maintenance document, and Maintenance Testing Specifications for Electrical Power Equipment and Systems was published in 1975.

NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA's scope of standards activity is different from that of the IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers’ documents where applicable. NETA's review and updating of presently published standards takes into account both national and international standards. NETA’s standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA's Section Panels and reviewing committees.

The NETA Acceptance Testing Specifications was developed for use by those responsible for assessing the suitability for initial energization of electrical power equipment and systems and to specify field tests and inspections that ensure these systems and apparatus perform satisfactorily, minimizing downtime and maximizing life expectancy.

Since 1972, several revisions of the Acceptance Testing Specifications have been published; in 1989 the NETA Technical Committee, with approval of the Board of Directors, set a four-year review and revision schedule. Unless it involves a significant safety or urgent technical issue, each comment and suggestion for change is held until the appropriate review period. Each edition includes new and completely revised sections. The document uses the standard numbering system of ANSI and IEEE. Since 1989, revised editions of the Acceptance Testing Specifications have been published in 1991, 1995, 1999, 2003, 2007, 2009, and 2013.

Suggestions for improvement of this standard are welcome. They should be sent to the InterNational Electrical Testing Association, 3050 Old Centre Avenue, Suite 102, Portage, MI 49024, or emailed to neta@netaworld.org.
PREFACE

(This Preface is not part of American National Standard ANSI/NETA ATS-2017)

It is recognized by the Association that the needs for acceptance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

Notation of Changes
Material included in this edition of the document but not part of the 2013 edition is marked with a black vertical line to the left of the insertion of text, deletion of text, or alteration of text.

The Document Structure
The document is divided into thirteen separate and defined sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>General Scope</td>
</tr>
<tr>
<td>Section 2</td>
<td>Applicable References</td>
</tr>
<tr>
<td>Section 3</td>
<td>Qualifications of Testing Organization and Personnel</td>
</tr>
<tr>
<td>Section 4</td>
<td>Division of Responsibility</td>
</tr>
<tr>
<td>Section 5</td>
<td>General</td>
</tr>
<tr>
<td>Section 6</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>Section 7</td>
<td>Inspection and Test Procedures</td>
</tr>
<tr>
<td>Section 8</td>
<td>System Function Tests and Commissioning</td>
</tr>
<tr>
<td>Section 9</td>
<td>Thermographic Survey</td>
</tr>
<tr>
<td>Section 10</td>
<td>Electromagnetic Field Testing</td>
</tr>
<tr>
<td>Section 11</td>
<td>Corona Studies (Reserved)</td>
</tr>
<tr>
<td>Tables</td>
<td>Reference Tables</td>
</tr>
<tr>
<td>Appendices</td>
<td>Various Informational Documents</td>
</tr>
</tbody>
</table>

Section 7 Structure
Section 7 is the main body of the document with specific information on what to do relative to the inspection and acceptance testing of electrical power distribution equipment and systems. It is not intended that this document list how to test specific pieces of equipment or systems.

Sequence of Tests and Inspections
The tests and inspections specified in this document are not necessarily presented in chronological order and may be performed in a different sequence.

Expected Test Results
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, four main bodies of information:

A. Visual and Mechanical Inspection
B. Electrical Tests
C. Test Values – Visual and Mechanical
D. Test Values – Electrical
PREFACE (Continued)

(This Preface is not part of American National Standard ANSI/NETA ATS-2017)

Results of Visual and Mechanical Inspections
Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section C., Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.A.8.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.C.2, the expected results for that particular task are listed within Section C., with reference back to the original task description on item 7.1.A.8.2.
Results of Electrical Tests

Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.B.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. In section D, Test Values – Electrical, the expected results for that particular task are listed in the Test Values section under item 2.
Optional Tests
The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s published tolerances and that equipment and systems are installed in accordance with design specifications. Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

1. Does another listed test provide similar information?
2. How does the cost of the test compare to the cost of other tests providing similar information?
3. How commonplace is the test procedure? Is it new technology?

Manufacturer’s Instruction Manuals
It is important to follow the recommendations contained in the manufacturer’s published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary
The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test and calibration data, including manufacturer’s published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.

Standards Review Council
InterNational Electrical Testing Association

James G. Cialdea
Timothy J. Cotter
Lorne J. Gara
Roderic L. Hageman
Leif Hoegberg
Daniel D. Hook

David G. Huffman
Ralph E. Patterson
Alan D. Peterson
Melissa A. Richard
Ronald A. Widup
Kristen K. Wicks

This is a preview of "ANSI/NETA ATS-2017". Click here to purchase the full version from the ANSI store.
CONTENTS

1. GENERAL SCOPE .. 1

2. APPLICABLE REFERENCES
 2.1 Codes, Standards and Specifications .. 2
 2.2 Other References ... 8
 2.3 Contact Information .. 8

3. QUALIFICATIONS OF TESTING ORGANIZATION AND PERSONNEL
 3.1 Testing Organization .. 10
 3.2 Testing Personnel ... 10

4. DIVISION OF RESPONSIBILITY
 4.1 The Owner’s Representative ... 11
 4.2 The Testing Organization .. 11

5. GENERAL
 5.1 Safety and Precautions .. 12
 5.2 Suitability of Test Equipment ... 12
 5.3 Test Instrument Calibration ... 13
 5.4 Test Report .. 14
 5.5 Test Decal ... 15

6. POWER SYSTEM STUDIES
 6.1 Short-Circuit Studies ... 16
 6.2 Coordination Studies ... 17
 6.3 Arc-Flash Hazard Analysis .. 18
 6.4 Load-Flow Studies ... 20
 6.5 Stability Studies .. 21
 6.6 Harmonic-Analysis Studies ... 22

7. INSPECTION AND TEST PROCEDURES
 7.1 Switchgear and Switchboard Assemblies ... 23
 7.2.1.1 Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small 28
 7.2.1.2 Transformers, Dry-Type, Air-Cooled, Large ... 30
 7.2.2 Transformers, Liquid-Filled .. 33
 7.3.1 Cables, Low-Voltage, Low-Energy - RESERVED .. 38
 7.3.2 Cables, Low-Voltage, 600-Volt Maximum .. 39
 7.3.3 Cables, Medium- and High-Voltage ... 41
 7.4 Metal-Enclosed Busways ... 44
 7.5.1.1 Switches, Air, Low-Voltage .. 46
 7.5.1.2 Switches, Air, Medium-Voltage, Metal-Enclosed .. 48
 7.5.1.3 Switches, Air, Medium- and High-Voltage, Open .. 51
 7.5.2 Switches, Oil, Medium-Voltage ... 54
 7.5.3 Switches, Vacuum, Medium-Voltage .. 57
 7.5.4 Switches, SF6, Medium-Voltage .. 60
 7.5.5 Switches, Cutouts ... 63
 7.6.1.1 Circuit Breakers, Air, Insulated-Case/Molded-Case ... 65
 7.6.1.2 Circuit Breakers, Low-Voltage Power ... 68
 7.6.1.3 Circuit Breakers, Air, Medium-Voltage .. 71
 7.6.2 Circuit Breakers, Oil, Medium- and High-Voltage .. 75
 7.6.3 Circuit Breakers, Vacuum, Medium-Voltage ... 80
 7.6.4 Circuit Breakers, SF6 .. 84
 7.7 Circuit Switchers .. 88
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>Network Protectors, 600-Volt Class</td>
<td>91</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Protective Relays, Electromechanical and Solid-State</td>
<td>95</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Protective Relays, Microprocessor-Based</td>
<td>104</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Instrument Transformers, Current Transformers</td>
<td>107</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Instrument Transformers, Voltage Transformers</td>
<td>110</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Instrument Transformers, Coupling-Capacitor Voltage Transformers</td>
<td>112</td>
</tr>
<tr>
<td>7.10.4</td>
<td>Instrument Transformers, High-Accuracy Instrument Transformers</td>
<td>115</td>
</tr>
<tr>
<td>7.11.1</td>
<td>Metering Devices, Electromechanical and Solid-State</td>
<td>116</td>
</tr>
<tr>
<td>7.11.2</td>
<td>Metering Devices, Microprocessor-Based</td>
<td>117</td>
</tr>
<tr>
<td>7.12.1.1</td>
<td>Regulating Apparatus, Voltage, Step Voltage Regulators</td>
<td>119</td>
</tr>
<tr>
<td>7.12.1.2</td>
<td>Regulating Apparatus, Voltage, Induction Regulators – WITHDRAWN</td>
<td>123</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Regulating Apparatus, Current - RESERVED</td>
<td>124</td>
</tr>
<tr>
<td>7.12.3</td>
<td>Regulating Apparatus, Load Tap-Changers</td>
<td>125</td>
</tr>
<tr>
<td>7.13</td>
<td>Grounding Systems</td>
<td>128</td>
</tr>
<tr>
<td>7.14</td>
<td>Ground-Fault Protection Systems, Low-Voltage</td>
<td>130</td>
</tr>
<tr>
<td>7.15.1</td>
<td>Rotating Machinery, AC Induction Motors and Generators</td>
<td>133</td>
</tr>
<tr>
<td>7.15.2</td>
<td>Rotating Machinery, Synchronous Motors and Generators</td>
<td>137</td>
</tr>
<tr>
<td>7.15.3</td>
<td>Rotating Machinery, DC Motors and Generators</td>
<td>142</td>
</tr>
<tr>
<td>7.16.1.1</td>
<td>Motor Control, Motor Starters, Low-Voltage</td>
<td>145</td>
</tr>
<tr>
<td>7.16.1.2</td>
<td>Motor Control, Motor Starters, Medium-Voltage</td>
<td>147</td>
</tr>
<tr>
<td>7.16.2.1</td>
<td>Motor Control, Motor Control Centers, Low-Voltage</td>
<td>151</td>
</tr>
<tr>
<td>7.16.2.2</td>
<td>Motor Control, Motor Control Centers, Medium-Voltage</td>
<td>152</td>
</tr>
<tr>
<td>7.17</td>
<td>Adjustable Speed Drive Systems</td>
<td>153</td>
</tr>
<tr>
<td>7.18.1.1</td>
<td>Direct-Current Systems, Batteries, Flooded Lead-Acid</td>
<td>156</td>
</tr>
<tr>
<td>7.18.1.2</td>
<td>Direct-Current Systems, Batteries, Vented Nickel-Cadmium</td>
<td>159</td>
</tr>
<tr>
<td>7.18.1.3</td>
<td>Direct-Current Systems, Batteries, Valve-Regulated Lead-Acid</td>
<td>161</td>
</tr>
<tr>
<td>7.18.2</td>
<td>Direct-Current Systems, Chargers</td>
<td>163</td>
</tr>
<tr>
<td>7.18.3</td>
<td>Direct-Current Systems, Rectifiers - RESERVED</td>
<td>165</td>
</tr>
<tr>
<td>7.19.1</td>
<td>Surge Arresters, Low-Voltage</td>
<td>166</td>
</tr>
<tr>
<td>7.19.2</td>
<td>Surge Arresters, Medium- and High-Voltage</td>
<td>168</td>
</tr>
<tr>
<td>7.20.1</td>
<td>Capacitors and Reactors, Capacitors</td>
<td>170</td>
</tr>
<tr>
<td>7.20.2</td>
<td>Capacitors and Reactors, Capacitor Control Devices - RESERVED</td>
<td>172</td>
</tr>
<tr>
<td>7.20.3.1</td>
<td>Capacitors and Reactors, Reactors (Shunt and Current-Limiting) Dry-Type</td>
<td>173</td>
</tr>
<tr>
<td>7.20.3.2</td>
<td>Capacitors and Reactors, Reactors (Shunt and Current-Limiting) Liquid-Filled</td>
<td>175</td>
</tr>
<tr>
<td>7.21</td>
<td>Outdoor Bus Structures</td>
<td>179</td>
</tr>
<tr>
<td>7.22.1</td>
<td>Emergency Systems, Engine Generator</td>
<td>181</td>
</tr>
<tr>
<td>7.22.2</td>
<td>Emergency Systems, Uninterruptible Power Systems</td>
<td>183</td>
</tr>
<tr>
<td>7.22.3</td>
<td>Emergency Systems, Automatic Transfer Switches</td>
<td>186</td>
</tr>
<tr>
<td>7.23</td>
<td>Communications - RESERVED</td>
<td>189</td>
</tr>
<tr>
<td>7.24.1</td>
<td>Automatic Circuit Reclosers and Line Sectionalizers, Automatic Circuit Reclosers, Oil/Vacuum</td>
<td>190</td>
</tr>
<tr>
<td>7.24.2</td>
<td>Automatic Circuit Reclosers and Line Sectionalizers, Automatic Line Sectionalizers, Oil</td>
<td>194</td>
</tr>
<tr>
<td>7.25</td>
<td>Fiber-Optic Cables</td>
<td>197</td>
</tr>
</tbody>
</table>
CONTENTS

8. SYSTEM FUNCTION TESTS AND COMMISSIONING ... 198
9. THERMOGRAPHIC SURVEY ... 199
10. ELECTROMAGNETIC FIELD TESTING ... 200
11. CORONA STUDIES - RESERVED .. 202

TABLES
100.1 Insulation Resistance Test Values, Electrical Apparatus and Systems, Other Than Rotating Machinery ... 204
100.2 Switchgear Withstand Test Voltages .. 205
100.3 Recommended Dissipation Factor/Power Factor at 20° C; Liquid-Filled Transformers, Regulators, and Reactors, .. 206
100.4 Insulating Fluid Limits
 100.4.1 Test Limits for New Insulating Oil Received in New Equipment 207
 100.4.2 Test Limits for Silicone Insulating Liquid in New Transformers 207
 100.4.3 Typical Values for Less-Flammable Hydrocarbon Insulating Liquid 208
100.5 Transformer Insulation Resistance, Acceptance Testing .. 209
100.6 Medium-Voltage Cables, Acceptance Test Values
 100.6.1 DC Test Voltages .. 210
 100.6.2 AC Test Voltages .. 211
 100.6.3 Partial Discharge Requirements for Shielded Power Cable 212
 100.6.4 Very Low Frequency Testing Levels .. 212
100.7 Inverse Time Trip Test at 300% of Rated Continuous Current, Molded-Case Circuit Breakers ... 213
100.8 Instantaneous Trip Tolerances for Field Testing of Circuit Breakers .. 214
100.9 Instrument Transformer Dielectric Tests, Field Acceptance .. 215
100.10 Maximum Allowable Vibration Amplitude.. 216
100.11 Insulation Resistance Test Values, Rotating Machinery, for One Minute at 40° C 217
100.12 US Standard Fasteners, Bolt Torque Values for Electrical Connections
 100.12.1 Heat-Treated Steel - Cadmium or Zinc Plated .. 218
 100.12.2 Silicon Bronze Fasteners ... 219
 100.12.3 Aluminum Alloy Fasteners ... 219
 100.12.4 Stainless Steel Fasteners .. 220
100.13 SF6 Gas Tests .. 221
100.14 Insulation Resistance Conversion Factors
 100.14.1 Test Temperatures to 20° C ... 222
 100.14.2 Test Temperatures to 40° C ... 223
100.15 High-Potential Test Voltage, Automatic Circuit Reclosers .. 224
100.16 High-Potential Test Voltage for Acceptance Test of Line Sectionalizers 225
100.17 Dielectric Withstand Test Voltages, Metal-Enclosed Bus .. 226
100.18 Thermographic Survey, Suggested Actions Based on Temperature Rise .. 227
100.19 Dielectric Withstand Test Voltages, Electrical Apparatus Other than Inductive Equipment... 228
100.20 Rated Control Voltages and their Ranges for Circuit Breakers
 100.20.1 Circuit Breakers... 229
 100.20.2 Solenoid-Operated Devices ... 230
100.21 Accuracy of IEC Class TP Current Transformers Error Limit .. 231
100.22 Minimum Radii for Power Cable, Single & Multiple Conductor Cables with Interlocked Armor,
 Smooth or Corrugated Aluminum Sheath or Lead Sheath... 232
CONTENTS

APPENDICES
Appendix A – Definitions ...235
Appendix B – RESERVED ...238
Appendix C – About the InterNational Electrical Testing Association ...239
Appendix D – Form for Comments ...241
Appendix E – Form for Proposals ...242
1. GENERAL SCOPE

1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for initial energization and final acceptance of electrical power equipment and systems.

2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational, are within applicable standards and manufacturer's tolerances, and are installed in accordance with design specifications.

3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety issues associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.