ANSI/NETA MTS-2011

AMERICAN NATIONAL STANDARD

STANDARD FOR MAINTENANCE TESTING SPECIFICATIONS for Electrical Power Equipment and Systems

Secretariat NETA (InterNational Electrical Testing Association)

Approved by American National Standards Institute

- This page intentionally left blank -

American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 Portage, MI 49024 269.488.6382 • FAX 269.488.6383 www.netaworld.org neta@netaworld.org Jayne Tanz - Executive Director Copyright© 2011 InterNational Electrical Testing Association All rights reserved Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright Information and Alteration of Content

2011 ANSI/NETA Standard for Maintenance Testing Specifications is protected under the copyright laws of the United States, and all rights are reserved. Further, the *Standard* may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the *Standard* provided *ANSI/NETA Standard for Maintenance Testing Specifications* is clearly identified in writing as the source of all such uses or reproductions.

Section 7 of the *ANSI/NETA Standard for Maintenance Testing Specifications* may be reproduced and used on a "cut and paste" basis for the particular type of equipment to be tested.

The following sections of the *ANSI/NETA Standard for Maintenance Testing Specifications* must be incorporated by reference as part of any subsection:

- 3. Qualifications of Testing Organization and Personnel
 - 3.1 Testing Organization
 - 3.2 Testing Personnel
- 4. Division of Responsibility
 - 4.1 The Owner's Representative
 - 4.2 The Testing Organization
- 5. General
 - 5.1 Safety and Precaution
 - 5.2 Suitability of Test Equipment
 - 5.3 Test Instrument Calibration
 - 5.4 Test Report

The purchaser is required to include the above sections with any section(s) of 7.

© Copyright 2011 InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 Portage, MI 49024 Voice: 888.300.6382 Facsimile: 269.488.6383 E-mail: neta@netaworld.org • Web: www.netaworld.org

Standards Review Council

The following persons were members of the NETA Standards Review Council which approved this document.

Charles K. Blizard, Sr. Timothy J. Cotter Diane W. Hageman Roderic L. Hageman Dave Huffman Ralph Patterson Alan D. Peterson Jayne Tanz Ron Widup

Maintenance Testing Specifications Section Panel Members

The following persons were members of the Section Panel which balloted on this document for submission to the NETA Standards Review Council.

Mark Baldwin Ken Bassett Tom Bishop Scott Blizard Michael Bowers Alan Bump John Cadick Michel Canstonguay Ernie Creech Tim Crnko Don Genutis Kerry Heid Stuart Jackson Scott Kinney Andrew Kobler Korey Kruse Benjamin Lanz Mark Lautenschlager Joe Nims Bruce Olson Jerry Parnell Raj Patel Tony Perry M. Lee Perry, Jr. Mose Ramieh, Sr. Vince Saporita Richard Sobhraj ChrisWerstiuk John White J.P. Wolff

NETA Accredited Companies

The following persons were voting members of the InterNational Electrical Testing Association when this document was approved on May 16, 2011.

A&F Electrical Testing., Inc.	Kevin Chilton
Advanced Testing Systems	Patrick MacCarthy
American Electrical Testing Co., Inc.	Scott Blizard
Apparatus Testing and Engineering	James Lawler
Applied Engineering Concepts	Michel Castonguay
Burlington Electrical Testing Company, Inc.	Walter Cleary
C.E. Testing., Inc.	Mark Chapman
CE Power Solutions of Wisconsin, LLC	James VanHandel
DYMAX Holdings, Inc.	Gene Philipp
Eastern High Voltage	Joseph Wilson
ELECT, P.C.	Barry W. Tyndall
Electric Power Systems, Inc.	Steve Reed
Electrical and Electronic Controls	Michael Hughes
Electrical Energy Experts, Inc.	William Styer
Electrical Equipment Upgrading, Inc.	Kevin Miller
Electrical Maintenance & Testing, Inc.	Brian Borst
Electrical Reliability Services	Lee Bigham
Electrical Testing, Inc.	Steve Dodd
Elemco Services, Inc.	Robert J. White
Hampton Tedder Technical Services	Matt Tedder
Harford Electrical Testing Co., Inc.	Vincent Biondino
High Energy Electrical Testing, Inc.	James P. Ratshin
High Voltage Maintenance Corp.	Eric Nation
HMT, Inc.	John Pertgen
Industrial Electric Testing, Inc.	Gary Benzenberg
Industrial Electronics Group	Butch E. Teal
Industrial Tests, Inc.	Greg Poole
Infra-Red Building and Power Service	Thomas McDonald

NETA Accredited Companies

M&L Power Systems Maintenance, Inc.	Darshan Arora
Magna Electric Corporation	Kerry Heid
Magna IV Engineering – Edmonton	Jereme Wentzell
Magna IV Engineering (BC), Ltd.	Cameron Hite
MET Electrical Testing, LLC	William McKenzie
National Field Services	Eric Beckman
Nationwide Electrical Testing, Inc.	Shashikant B. Bagle
North Central Electric, Inc.	Robert Messina
Northern Electrical Testing, Inc.	Lyle Detterman
Orbis Engineering Field Services	Lorne Gara
Pacific Power Testing, Inc.	Steve Emmert
Phasor Engineering	Rafael Castro
Potomac Testing, Inc.	Ken Bassett
Power & Generation Testing, Inc.	Mose Ramieh
Power Engineering Services, Inc.	Miles R. Engelke
POWER PLUS Engineering, Inc.	Salvatore Mancuso
Power Products & Solutions, Inc.	Ralph Patterson
Power Services, LLC	Gerald Bydash
Power Systems Testing Co.	David Huffman
Power Test, Inc.	Richard Walker
POWER Testing and Energization, Inc.	Chris Zavadlov
Powertech Services, Inc.	Jean A. Brown
Precision Testing Group	Glenn Stuckey
PRIT Service, Inc.	Roderic Hageman
Reuter & Hanney, Inc.	Michael Reuter
REV Engineering, LTD	Roland Davidson
Scott Testing, Inc.	Russ Sorbello
Shermco Industries	Ron Widup
Sigma Six Solutions, Inc.	John White
Southern New England Electrical Testing	David Asplund, Sr.

NETA Accredited Companies

Southwest Energy Systems, LLC	Robert Sheppard
Taurus Power and Controls, Inc.	Rob Bulfinch
Three-C Electrical Co., Inc.	James Cialdea
Tidal Power Services, LLC	Monty Janak
Tony Demaria Electric, Inc.	Anthony Demaria
Trace Electrical Services & Testing, LLC	Joseph Vasta
Utilities Instrumentation Service, Inc.	Gary Walls
Utility Service Corporation	Alan Peterson
Western Electrical Services	Dan Hook

NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.

InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 • Portage, MI 49024 Voice: 888.300.6382 Facsimile: 269.488.6383 Email: neta@netaworld.org • Web: www.netaworld.org Jayne Tanz, CMP - Executive Director

- This page intentionally left blank -

FOREWORD

(This Foreword is not part of American National Standard ANSI/NETA MTS-2011)

The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA's scope of standards activity is different from that of IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers' documents where applicable. NETA's review and updating of presently published standards takes into account both national and international standards. NETA's standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA's ballot pools and reviewing committees.

The first NETA *Maintenance Testing Specifications for Electrical Power Equipment and Systems* was published in 1975. Since 1989, revised editions of the *Maintenance Testing Specifications* have been published in 1993, 1997, and 2001.

In 2005, this document was approved for the first time as an American National Standard. The 2011 *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* is the most current revision of this document.

The ANSI/NETA *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* was developed for use by those responsible for the continued operation of existing electrical systems and equipment to guide them in specifying and performing the necessary tests to ensure that these systems and apparatus perform satisfactorily, minimizing downtime and maximizing life expectancy. This document aids in ensuring safe, reliable operation of existing electrical power systems and equipment. Maintenance testing can identify potential problem areas before they become major problems requiring expensive and time-consuming solutions.

Suggestions for improvement of this standard are welcome. They should be sent to the InterNational Electrical Testing Association, 3050 Old Centre Avenue, Suite 102, Portage, MI 49024.

PREFACE

It is recognized by the Association that the needs for maintenance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

The Document Structure

The document is divided into twelve separate and defined sections:

Section	Description
Section 1	General Scope
Section 2	Applicable References
Section 3	Qualifications of Testing Organization and Personnel
Section 4	Division of Responsibility
Section 5	General
Section 6	Power System Studies
Section 7	Inspection and Test Procedures
Section 8	System Function Test
Section 9	Thermographic Survey
Section 10	Electromagnetic Field Testing
Tables	Reference Tables
Appendices	Various Informational Documents

Section 7 Structure

Section 7 is the main body of the document with specific information on what to do relative to the inspection and maintenance testing of electrical power distribution equipment and systems. It is not intended that this document explain how to test specific pieces of equipment or systems.

Expected Test Results

Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, three main bodies of information:

- 1. Visual and Mechanical Inspection
- 2. Electrical Tests
- 3. Test Values

PREFACE (continued)

Results of Visual and Mechanical Inspections

Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section 3.1 Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.1.7.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.3. 1.2, the expected results for that particular task are listed within Section 3.1, with reference back to the original task description on item 7.1.1.7.2.

PREFACE (continued)

Results of Electrical Tests

Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.2.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.

PREFACE (continued)

Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer's published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

- 1. Does another listed test provide similar information?
- 2. How does the cost of the test compare to the cost of other tests providing similar information?
- 3. How commonplace is the test procedure? Is it new technology?

Manufacturer's Instruction Manuals

It is important to follow the recommendations contained in the manufacturer's published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary

The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test data, including manufacturer's published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.

Standards Review Council InterNational Electrical Testing Association

Charles K. Blizard, Sr. Timothy J. Cotter Diane W. Hageman Roderic L. Hageman Dave Huffman Ralph Patterson Alan D. Peterson Jayne Tanz Ron Widup

- This page intentionally left blank -

CONTENTS

1.	GENERA	L SCOPE 1	
2.	APPLICABLE REFERENCES		
3.	QUALIFI	CATIONS OF TESTING PERSONNEL 11	
4.	DIVISION	N OF RESPONSIBILITY 12	
5.	GENERA	L 13	
	5.1	Safety and Precautions	
	5.2	Suitability of Test Equipment	
	5.3	Test Instrument Calibration	
	5.4	Test Report	
6.	POWER S	SYSTEM STUDIES	
	6.1	Short-Circuit Studies	
	6.2	Coordination Studies	
	6.3	Arc-Flash Hazard Analysis	
	6.4	Load-Flow Studies	
	6.5	Stability Studies	
	6.6	Harmonic-Analysis Studies	
7.	INSPECT	ION AND TEST PROCEDURES	
	7.1	Switchgear and Switchboard Assemblies	
	7.2.1.1	Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small	
	7.2.1.2	Transformers, Dry-Type, Air-Cooled, Large	
	7.2.2	Transformers, Liquid-Filled	
	7.3.1	Cables, Low-Voltage, Low-Energy – Reserved	
	7.3.2	Cables, Low-Voltage, 600 Volt Maximum	
	7.3.3	Cables, Medium- and High-Voltage	
	7.4	Metal-Enclosed Busways	
	7.5.1.1	Switches, Air, Low-Voltage	
	7.5.1.2	Switches, Air, Medium-Voltage, Metal-Enclosed	
	7.5.1.3	Switches, Air, Medium- and High-Voltage, Open	
	7.5.2	Switches, Oil, Medium-Voltage	
	7.5.3	Switches, Vacuum, Medium-Voltage	
	7.5.4	Switches, SF ₆ , Medium-Voltage	
	7.5.5	Switches, Cutouts	
	7.6.1.1	Circuit Breakers, Air, Insulated-Case/Molded-Case	
	7.6.1.2	Circuit Breakers, Air, Low-Voltage Power	
	7.6.1.3	Circuit Breakers, Air, Medium-Voltage	
	7.6.2	Circuit Breakers, Oil, Medium- and High-Voltage	
	7.6.3	Circuit Breakers, Vacuum, Medium-Voltage	
	7.6.4	Circuit Breakers, SF ₆	
	7.7	Circuit Switchers	

CONTENTS (continued)

7.8	Network Protectors, 600-Volt Class	93
7.9.1	Protective Relays, Electromechanical and Solid-State	97
7.9.2	Protective Relays, Microprocessor-Based	104
7.10	Instrument Transformers	106
7.11.1	Metering Devices, Electromechanical and Solid-State	112
7.11.2	Metering Devices, Microprocessor-Based	114
7.12.1.1	Regulating Apparatus, Voltage, Step-Voltage Regulators	116
7.12.1.2	Regulating Apparatus, Voltage, Induction Regulators	121
7.12.2	Regulating Apparatus, Current – Reserved	125
7.12.3	Regulating Apparatus, Load Tap-Changers	126
7.13	Grounding Systems	130
7.14	Ground-Fault Protection Systems, Low-Voltage	132
7.15.1	Rotating Machinery, AC Induction Motors and Generators	135
7.15.2	Rotating Machinery, Synchronous Motors and Generators	139
7.15.3	Rotating Machinery, DC Motors and Generators	145
7.16.1.1	Motor Control, Motor Starters, Low-Voltage	148
7.16.1.2	Motor Control, Motor Starters, Medium-Voltage	151
7.16.2.1	Motor Control, Motor Control Centers, Low-Voltage	155
7.16.2.2	Motor Control, Motor Control Centers, Medium-Voltage	155
7.17	Adjustable-Speed Drive Systems	156
7.18.1.1	Direct-Current Systems, Batteries, Flooded Lead-Acid	159
7.18.1.2	Direct-Current Systems, Batteries, Vented Nickel-Cadmium	162
7.18.1.3	Direct Current Systems, Batteries, Valve-Regulated Lead-Acid	165
7.18.2	Direct-Current Systems, Chargers	167
7.18.3	Direct-Current Systems, Rectifiers – Reserved	169
7.19.1	Surge Arresters, Low-Voltage Surge Protection Devices	170
7.19.2	Surge Arresters, Medium- and High-Voltage Surge Protection Devices	172
7.20.1	Capacitors and Reactors, Capacitors	174
7.20.2	Capacitors and Reactors, Capacitor Control Devices – Reserved	176
7.20.3.1	Capacitors and Reactors, Reactors (Shunt and Current-Limiting), Dry-Type	177
7.20.3.2	Capacitors and Reactors, Reactors (Shunt and Current-Limiting), Liquid-Filled	179
7.21	Outdoor Bus Structures	183
7.22.1	Emergency Systems, Engine Generator.	185
7.22.2	Emergency Systems, Uninterruptible Power Systems	187
7.22.3	Emergency Systems, Automatic Transfer Switches	190
7.23	Communications – Reserved	193
7.24.1	Automatic Circuit Reclosers and Line Sectionalizers,	104
7 2 4 2	Automatic Circuit Reclosers, Oil/Vacuum	194
1.24.2	Automatic Circuit Reclosers and Line Sectionalizers	100
7.25	Automatic Line Sectionalizers, Ull	198
1.20 OVOTEM	FIDER-OPTIC CADLES	201
SISIEM	FUNCTION TESTS	202
		203
CODONIA	JMAUNETIC FIELD TESTING	204
UUKUNA	$\Delta SIUDIES - KESEKVED$	205

8. 9. 10. 11.

CONTENTS (continued)

TABLES

100.1	Insulation Resistance Test Values, Electrical Apparatus and Systems	208	
100.2	Switchgear Withstand Test Voltages		
100.3	Dissipation Factor/Power Factor at 20° C; Liquid-Filled Transformers,		
	Regulators and Reactors, Maintenance Test Values	210	
100.4	Insulating Fluid Limits		
	100.4.1 Suggested Limits for Class I Insulating Oil, Mineral Oil	211	
	100.4.2 Suggested Limits for Less-Flammable Hydrocarbon Insulating Liquid	212	
	100.4.3 Suggested Limits for Service-Aged Silicone Insulating Liquid	213	
	100.4.4 Suggested Limits for Service-Aged Tetrachloroethylene Insulating Fluid	213	
100.5	Transformer Insulation Resistance, Maintenance Testing	214	
100.6	Cables, Maintenance Test Values		
	100.6.1 Medium-Voltage Cables, Maintenance Test Values, DC Test Voltages	215	
	100.6.2 Field Test Voltages for Laminated Dielectric, Shielded Power Cable Systems		
	Rated 5.000 Volts and Above with High DC Voltage	216	
	100.6.3 Very Low Frequency Testing Levels for Medium-Voltage Cable	-	
	0 1 Hz Test Voltage (rms)	217	
100.7	Molded-Case Circuit Breakers. Inverse Time Trip Test	218	
100.8	Instantaneous Trip Tolerances for Field Testing of Circuit Breakers	219	
100.9	Instrument Transformer Dielectric Tests Field Maintenance	220	
100 10	Maximum Allowable Vibration Amplitude	221	
100.11	Withdrawn	222	
100.11	Bolt-Torque Values for Electrical Connections US Standard Fasteners		
100112	100 12 1 Heat-Treated Steel – Cadmium or Zinc Plated	223	
	100.12.2 Silicon Bronze Fasteners Torque (Pound-Feet)	223	
	100.12.3 Aluminum Alloy Fasteners, Torque (Pound-Feet)	224	
	100 12 4 Stainless Steel Fasteners, Torque (Pound-Feet)	224	
100 13	SE ₄ Gas Tests	225	
100.14	Insulation Resistance Conversion Factors	220	
100.11	100 14 1 Insulation Resistance Conversion Factors (20° C)	226	
	100 14 2 Insulation Resistance Conversion Factors (40° C)	227	
100 15	High-Potential Test Voltage for Automatic Circuit Reclosers	228	
100.15	High-Potential Test Voltage for Periodic Test of Line Sectionalizers	229	
100.17	Metal-Enclosed Bus Dielectric Withstand Test Voltages	230	
100.17	Thermographic Survey Suggested Actions Based on Temperature Rise	231	
100.10	Dielectric Withstand Test Voltages for Electrical Apparatus	231	
100.17	Other than Inductive Equipment	232	
100.20	Rated Control Voltages and Their Ranges for Circuit Breakers	292	
100.20	100 20 1 Rated Control Voltages and Their Ranges for Circuit Breakers	233	
	100.20.7 Rated Control Voltages and Their Ranges for Circuit Breakers	255	
	Soleniod-Onerated Devices	235	
100.21	Accuracy of IEC Class TP Current Transformers Frror Limit	235	
100.21	Minimum Radii for Power Cable	230	
100.22		231	
APPEN	DICES		

Appendix A – Definitions	241
Appendix B – Frequency of Maintenance Tests	243

CONTENTS (continued)

Appendix C – About the InterNational Electrical Testing Association	247
Appendix D – Form for Comments	249
Appendix E – Form for Proposals	250

- This page intentionally left blank -

1. GENERAL SCOPE

1.1 Maintenance Testing Specifications

- 1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for continued service and reliability of electrical power distribution equipment and systems.
- 2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational, are within applicable standards and manufacturer's tolerances, and are suitable for continued service.
- 3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety problems associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.

