AMERICAN NATIONAL STANDARD

STANDARD FOR MAINTENANCE TESTING SPECIFICATIONS for Electrical Power Equipment and Systems

Secretariat
NETA (InterNational Electrical Testing Association)

Approved by
American National Standards Institute
Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by
InterNational Electrical Testing Association
3050 Old Centre Road, Suite 101
Portage, MI 49024
269.488.6382 · FAX 269.488.6383
Web: www.netaworld.org
Email: neta@netaworld.org
Melissa Richard - Executive Director

Copyright© 2019
InterNational Electrical Testing Association
All rights reserved
Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
Copyright Information and Alteration of Content

2019 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is protected under the copyright laws of the United States, and all rights are reserved. Further, the ANSI/NETA MTS may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the 2019 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems provided 2019 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is clearly identified in writing as the source of all such uses or reproductions.

2019 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems may be reproduced and used in whole or in part for the purpose of creating project specifications, basis of design documentation, maintenance plans, or other similar uses that purport to require compliance with the contents of this document.

The following sections of the 2019 ANSI/NETA MTS Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems must be incorporated by reference as part of any subsection:

3. Qualifications
4. Division of Responsibility
5. General

The user of this document is required to include the above sections with any other section(s) reproduced from this document.

© Copyright 2019
InterNational Electrical Testing Association
3050 Old Centre Road, Suite 101
Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
Email: neta@netaworld.org • Web: www.netaworld.org
Standards Review Council
The following persons were members of the NETA Standards Review Council which approved this document.

James G. Cialdea
Timothy J. Cotter
Lorne J. Gara
Roderic L. Hageman
Leif Hoegberg
Dan Hook
David G. Huffman
Ralph E. Patterson
Alan D. Peterson
Melissa A. Richard
Ron Widup

Maintenance Testing Specifications Ballot Pool Members
The following persons were members of the Ballot Pool which balloted on this document for submission to the NETA Standards Review Council.

Dustin Ashliegh
Ken Basset
Tom Bishop
Scott Blizard
Michael Bowers
Tim Crnko
Jim Dollard
David Geary
Don Genutis
Paul Hartman
John Hauck
Kerry Heid
Bill Higgenbotham
Stuart Jackson
Andrew Kobler
Korey Kruse
Ben Lanz
Mark Lautenschlager
Steve Park
Jerry Parnell
Tony Perry
Mose Ramieh
Randall Sagan
Bob Sheppard
Mark Siira
Richard Sobhraj
Alan Turpen
Chris Werstiuk
John White
Jean-Pierre Wolff
Chris Zavadlov
NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.

InterNational Electrical Testing Association
3050 Old Centre Road, Suite 101 • Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
Email: neta@netaworld.org • Web: www.netaworld.org
Melissa Richard - Executive Director
The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA’s scope of standards activity is different from that of IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers’ documents where applicable. NETA’s review and updating of presently published standards takes into account both national and international standards. NETA’s standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA’s ballot pools and reviewing committees.

In 2005, this document was approved for the first time as an American National Standard. It was published as a revised American National Standard in 2011 and in 2015. The 2019 Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems is the most current revision of this document, and was approved as a revised American National Standard on February 4, 2019.

The ANSI/NETA Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems was developed for use by those responsible for the continued operation of existing electrical systems and equipment to guide them in specifying and performing the necessary tests to ensure that these systems and apparatus perform satisfactorily, minimizing downtime, and maximizing life expectancy. This document aids in ensuring safe, reliable operation of existing electrical power systems and equipment. Maintenance testing and understanding the condition of maintenance can identify potential problem areas before they become safety concerns or major problems requiring expensive and time-consuming solutions.
It is recognized by the Association that the needs for maintenance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

Notation of Changes
Material included in this edition of the document but not part of the previous edition is marked with a black vertical line to the left of the insertion of text, deletion of text, or alteration of text.

Document Structure
The document is divided into thirteen separate and defined sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>General Scope</td>
</tr>
<tr>
<td>Section 2</td>
<td>Applicable References</td>
</tr>
<tr>
<td>Section 3</td>
<td>Qualifications of Testing Organization and Personnel</td>
</tr>
<tr>
<td>Section 4</td>
<td>Division of Responsibility</td>
</tr>
<tr>
<td>Section 5</td>
<td>General</td>
</tr>
<tr>
<td>Section 6</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>Section 7</td>
<td>Inspection and Test Procedures</td>
</tr>
<tr>
<td>Section 8</td>
<td>System Function Test</td>
</tr>
<tr>
<td>Section 9</td>
<td>Thermographic Survey</td>
</tr>
<tr>
<td>Section 10</td>
<td>Electromagnetic Field Survey</td>
</tr>
<tr>
<td>Section 11</td>
<td>Online Partial-Discharge Survey for Switchgear</td>
</tr>
<tr>
<td>Tables</td>
<td>Reference Tables</td>
</tr>
<tr>
<td>Appendices</td>
<td>Informational Documents</td>
</tr>
</tbody>
</table>

Section 7 Structure
Section 7 is the main body of the document with specific information on what to do relative to the inspection and maintenance testing of electrical power equipment and systems. It is not intended that this document explain how to test specific pieces of equipment or systems.

Sequence of Tests and Inspections
The tests and inspections specified in this document are not necessarily presented in chronological order and may be performed in a different sequence.

Expected Test Results
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, four main bodies of information:

A. Visual and Mechanical Inspection
B. Electrical Tests
C. Test Values – Visual and Mechanical
D. Test Values – Electrical

PREFACE (continued)

Results of Visual and Mechanical Inspections

Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section C. Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.A.8.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.C.2, the expected results for that particular task are listed within Section C, with reference back to the original task description on item 7.1.A.8.2.

7. INSPECTION AND TEST PROCEDURES

7.1 Switchgear, Switchboard, and Panelboard Assemblies

A. Visual and Mechanical Inspection

1. Inspect physical, electrical, and mechanical condition.
2. Inspect all physical, electrical, and mechanical condition.
3. Precautions
4. Cleanliness
5. Visual inspection of all visual connections are tight and there is no excessive force during operation.
6. Inspect all visual connections by calibrating
7. Inspect all visual connections by calibrating

B. Test Values – Visual and Mechanical

1. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. (7.1.A.1)
2. Insulation resistance values of the insulation should be in accordance with manufacturer’s published data. In the absence of manufacturer’s published data, use Table 10.12. (7.1.A.2)
3. Values of insulation resistance values. If the insulation is consistent with the manufacturer’s published data, it should be investigated. (7.1.A.3)
4. If evidence of damage or insulation failure is observed by the end of the initial time of voltage application, the test should be stopped immediately. (7.1.A.4)
Results of Electrical Tests
Each electrical test has a corresponding expected result, and the test item and the expected result have identical item numbers in their section, that is, if the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.B.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.
Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

1. Does another listed test provide similar information?
2. How does the cost of the test compare to the cost of other tests providing similar information?
3. How commonplace is the test procedure? Is it new technology?

If/When Applicable

The phrases "if applicable", "when applicable", and any variation thereof do not occur in this standard. This standard assumes that if devices or pieces of equipment are not present, they will not be subject to testing or verification.

Manufacturer’s Instruction Manuals

It is important to follow the recommendations contained in the manufacturer’s published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary

The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed. In all instances, the condition of maintenance should be understood so that risk factors associated with safety should be part of the decision-making process.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test data and condition of maintenance, including manufacturer’s published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.
CONTENTS

1. GENERAL SCOPE ... 1
2. APPLICABLE REFERENCES .. 2
3. QUALIFICATIONS OF TESTING PERSONNEL .. 11
4. DIVISION OF RESPONSIBILITY .. 12
5. GENERAL ... 13
 5.1 Safety and Precautions ... 13
 5.2 Suitability of Test Equipment ... 13
 5.3 Test Instrument Calibration .. 14
 5.4 Test Report .. 15
 5.5 Test Decal .. 16
6. POWER SYSTEM STUDIES ... 17
 6.1 Short-Circuit Studies ... 17
 6.2 Coordination Studies ... 18
 6.3 Incident Energy Analysis ... 19
 6.4 Load-Flow Studies ... 21
 6.5 Stability Studies ... 22
 6.6 Harmonic-Analysis Studies ... 23
7. INSPECTION AND TEST PROCEDURES .. 24
 7.1 Switchgear, Switchboard, and Panelboard Assemblies ... 24
 7.2.1.1 Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small 28
 7.2.1.2 Transformers, Dry-Type, Air-Cooled, Large... 30
 7.2.2 Transformers, Liquid-Filled .. 34
 7.3.1 Cables, Low-Voltage, Low-Energy – Reserved .. 38
 7.3.2 Cables, Low-Voltage ... 39
 7.3.3 Shielded Cables, Medium- and High-Voltage ... 41
 7.4 Metal-Enclosed Busways .. 44
 7.5.1.1 Switches, Air, Low-Voltage .. 46
 7.5.1.2 Switches, Air, Medium-Voltage, Metal-Enclosed ... 49
 7.5.1.3 Switches, Air, Medium- and High-Voltage, Open ... 52
 7.5.2 Switches, Oil, Medium-Voltage ... 55
 7.5.3 Switches, Vacuum, Medium-Voltage ... 58
 7.5.4 Switches, SF6, Medium-Voltage ... 62
 7.5.5 Switches, Cutouts .. 65
 7.6.1.1 Circuit Breakers, Air, Insulated-Case/Molded-Case ... 67
 7.6.1.2 Circuit Breakers, Air, Low-Voltage Power .. 70
 7.6.1.3 Circuit Breakers, Air, Medium-Voltage .. 74
 7.6.2 Circuit Breakers, Oil, Medium- and High-Voltage .. 78
 7.6.3 Circuit Breakers, Vacuum, Medium-Voltage .. 83
 7.6.4 Circuit Breakers, SF6 ... 87
 7.7 Circuit Switchers .. 91
 7.8 Network Protectors ... 94
 7.9.1 Protective Relays, Electromechanical and Solid-State .. 98
 7.9.2 Protective Relays, Microprocessor-Based .. 106
 7.10.1 Instrument Transformers, Current Transformers .. 109
 7.10.2 Instrument Transformers, Voltage Transformers .. 112
 7.10.3 Instrument Transformers, Coupling-Capacitor Voltage Transformers 115
 7.10.4 Instrument Transformers, High-Accuracy Instrument Transformers - Reserved... 118
 7.11.1 Metering Devices, Electromechanical and Solid-State ... 119
TABLES (Continued)
100.4 Insulating Fluid Limits
100.4.1 Suggested Limits for Class I Insulating Oil, Mineral Oil 218
100.4.2 Suggested Limits for Less-Flammable Hydrocarbon Insulating Liquid 219
100.4.3 Suggested Limits for Service-Aged Silicone Insulating Liquid 220
100.4.4 Suggested Limits for Service-Aged Tetrachloroethylene Insulating Fluid 221
100.4.5 Suggested Limits for Continued Use of In-Service Natural Ester Liquids 222
100.5 Transformer Insulation Resistance, Maintenance Testing 224
100.6 Cables, Maintenance Test Values
100.6.1 Medium-Voltage Cables, Maintenance Test Values, DC Test Voltages 225
100.6.2 Field Test Voltages for Laminated Dielectric, Shielded Power Cable Systems
 Rated 5 kV to 500 kV System Voltage ... 226
100.6.3 Very Low Frequency Testing Levels for Medium-Voltage Cable
 0.1 Hz Test Voltage (rms) .. 227
100.6.4 DAC Test Voltage Levels (20 Hz to 500 Hz) as Used for Maintenance Testing
 (50 DAC excitations) of Repaired/Refurbished Power Cables 228
100.7 Molded-Case Circuit Breakers, Inverse Time Trip Test 229
100.8 Instantaneous Trip Tolerances for Field Testing of Circuit Breakers 230
100.9 Instrument Transformer Dielectric Tests, Field Maintenance 231
100.10 Maximum Allowable Vibration Amplitude .. 232
100.11 Insulation Resistance Test Values for Rotating Machinery for One Minute at 40° C 233
100.12 Bolt-Torque Values for Electrical Connections, US Standard Fasteners
100.12.2 Silicon Bronze Fasteners, Torque (Pound-Feet) .. 235
100.12.3 Aluminum Alloy Fasteners, Torque (Pound-Feet) 236
100.12.4 Stainless Steel Fasteners, Torque (Pound-Feet) .. 237
100.13 SF6 Gas Tests .. 238
100.14 Insulation Resistance Conversion Factors
100.14.1 Insulation Resistance Conversion Factors (20° C) 239
100.14.2 Insulation Resistance Conversion Factors (40° C) 240
100.15 High-Potential Test Voltage for Automatic Circuit Reclosers 241
100.16 High-Potential Test Voltage for Periodic Test of Line Sectionalizers 242
100.17 Metal-Enclosed Bus Dielectric Withstand Test Voltages 243
100.18 Thermographic Survey, Suggested Actions Based on Temperature Rise 244
100.19 Dielectric Withstand Test Voltages for Electrical Apparatus
 Other than Inductive Equipment .. 245
100.20 Rated Control Voltages and Their Ranges for Circuit Breakers
100.20.1 Rated Control Voltages and Their Ranges for Circuit Breakers 246
100.20.2 Rated Control Voltages and Their Ranges for Circuit Breakers,
 Solenoid-Operated Devices .. 248
100.21 Accuracy of IEC Class TP Current Transformers, Error Limit (WITHDRAWN) 249
100.22 Minimum Radii for Power Cable .. 250
100.23 Online Partial Discharge Survey for Switchgear .. 252
100.23.1 Suggested Actions Based on Nature and Strength of Signal (TEV) 252
100.23.2 Suggested Actions Based on Nature and Strength of Signal (HFCT) 252
100.23.3 Suggested Actions Based on Nature and Strength of Signal (UHF) 253
100.23.4 Suggested Actions Based on Nature and Strength of Signal (VIS) 253
CONTENTS (continued)

100.23.5 Suggested Actions Based on Nature and Strength of Signal
(contact/airborne acoustic) .. 253

APPENDICES
Appendix A – Definitions .. 254
Appendix B – Frequency of Maintenance Tests ... 256
Appendix C – Frequency of Power System Studies ... 260
Appendix D – About the InterNational Electrical Testing Association 261
Appendix E – Form for Comments ... 263
Appendix F – Form for Proposals ... 264
1. **GENERAL SCOPE**

1.1 **Maintenance Testing Specifications**

1. These specifications incorporate comprehensive field tests and inspections to assess the suitability for continued service, condition of maintenance, and reliability of electrical power distribution equipment and systems.

2. The purpose of these specifications is to assure tested electrical equipment and systems are operational, are within applicable standards and manufacturer’s tolerances, and are suitable for continued service.

3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the possible safety-related issues problems associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.