Acceptance Testing Specifications
for
Electrical Power Distribution
Equipment and Systems

These specifications have been developed
by the
InterNational Electrical Testing Association

© Copyright 2007
InterNational Electrical Testing Association
2700 W. Centre Avenue, Suite A
Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
E-mail: neta@netaworld.org • Web: www.netaworld.org

ATS-2007
Copyright Information and Alteration of Content

2007 NETA Acceptance Testing Specifications are protected under the copyright laws of the United States, and all rights are reserved. Further, the Specifications may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the Specifications provided NETA Acceptance Testing Specifications are clearly identified in writing as the source of all such uses or reproductions.

Section 7 of the NETA Acceptance Testing Specifications may be reproduced and used on a “cut and paste” basis for the particular type of equipment to be tested.

The following sections of the NETA Acceptance Testing Specifications must be incorporated by reference as part of any subsection:

3. Qualifications of Testing Organization and Personnel
 3.1 Testing Organization
 3.2 Testing Personnel
4. Division of Responsibility
 4.1 The Owner’s Representative
 4.2 The Testing Organization
5. General
 5.1 Safety and Precaution
 5.2 Suitability of Test Equipment
 5.3 Test Instrument Calibration
 5.4 Test Report

The purchaser is required to include the above sections with any section(s) of 7.

© Copyright 2007
InterNational Electrical Testing Association
2700 W. Centre Avenue, Suite A
Portage, MI 49024
Voice: 888.300.6382 Facsimile: 269.488.6383
E-mail: neta@netaworld.org • Web: www.netaworld.org

ATS-2007
Standards Review Council

These specifications were submitted for public comment and reviewed by the NETA Standards Review Council.

Charles K. Blizard, Sr.
Timothy J. Cotter
Diane W. Hageman
Roderic L. Hageman
Ralph Patterson
Alan D. Peterson
Jayne Tanz
Ron Widup

Contributors

Those who contributed and commented concerning this document include:

David Asplund Lyle Detterman David C. LeClair John Shanks
Ken Bassett George Estano William Long Mel Smith
Barry Bell Rick Eynon Jeff Lord John Snell
Robert Bell Melvyn Foster Robert Madding Richard Sobhraj
Thomas Bishop Robert Ganser Sam Manusco Brooke Stauffer
Scott Blizard Reuben Garzon Neil McCord Alan Storms
Mike Bowers Gerald Gentle Pete McKenzie Joseph Svoboda
Eldridge Byron Norbert Gilbert Nigel McQuin Ron Thomas
John Cadick Craig Goodwin Michael Mercer Kurt Uhlar
Marie Calwise Kaveh Haghkerdar Mark Meyer David Heath
Steven Chamber Wayne Hansen Georges Montillet Wally Vahlstrom
Kent Choma David Heath Paul Notarian Michael Velvikis
Larry Christodoulou Kerry Heid Ted Olsen Chris Werstiuk
Glen Chenoweth Stuart Jackson Mark Pustejovsky James R. White
Joseph Cocke Fredi Jakob Mark Rizzi John Wood
Neil Coward Mary R. Jordan Tony Rosato Steve Yovanov
John Davis Andrew Kobler Randall Sagan
Gerald DeAngelo Ben Lanz Sandy Sanor
Thomas DeGenaro Mark Lautenschlager Marc Schneider
NETA Accredited Companies

NETA Accredited Companies at the time this document was approved:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Electrical Testing Co.</td>
<td>Charles Blizard</td>
</tr>
<tr>
<td>Apparatus Testing and Engineering</td>
<td>James Lawler</td>
</tr>
<tr>
<td>Applied Engineering Concepts</td>
<td>Michel Castonguay</td>
</tr>
<tr>
<td>Burlington Electrical Testing Company, Inc.</td>
<td>Walter Cleary</td>
</tr>
<tr>
<td>DYMAX Service, Inc.</td>
<td>Gene Philipp</td>
</tr>
<tr>
<td>Eastern High Voltage</td>
<td>Barbara Wilson</td>
</tr>
<tr>
<td>ECP Tech Services Inc.</td>
<td>Mike McDaniel</td>
</tr>
<tr>
<td>Electric Power Systems, Inc.</td>
<td>Charles Reed</td>
</tr>
<tr>
<td>Electrical and Electronic Controls</td>
<td>Michael Hughes</td>
</tr>
<tr>
<td>Electrical Energy Experts, Inc.</td>
<td>William Styer</td>
</tr>
<tr>
<td>Electrical Engineering Consulting & Testing, P.C.</td>
<td>Barry W. Tyndall</td>
</tr>
<tr>
<td>Electrical Equipment Upgrading, Inc.</td>
<td>Michael Carbo</td>
</tr>
<tr>
<td>Electrical Reliability Services</td>
<td>Chris Village</td>
</tr>
<tr>
<td>Electrical Technology Services, LLC</td>
<td>James Van Handel</td>
</tr>
<tr>
<td>Electrical Testing Services</td>
<td>Frank Plonka</td>
</tr>
<tr>
<td>Electrical Testing, Inc.</td>
<td>Steve Dodd</td>
</tr>
<tr>
<td>Elemco Testing Co., Inc.</td>
<td>Robert J. White</td>
</tr>
<tr>
<td>ESCO Energy Services</td>
<td>Lynn Hamrick</td>
</tr>
<tr>
<td>Hampton Tedder Technical Services</td>
<td>Matt Tedder</td>
</tr>
<tr>
<td>Harford Electrical Testing Co., Inc.</td>
<td>Vincent Biondino</td>
</tr>
<tr>
<td>High Energy Electrical Testing, Inc.</td>
<td>James P. Ratshin</td>
</tr>
<tr>
<td>High Voltage Maintenance Corp.</td>
<td>Tom Nation</td>
</tr>
<tr>
<td>HMT, Inc.</td>
<td>John Pertgen</td>
</tr>
<tr>
<td>Industrial Electric Testing, Inc.</td>
<td>Gary Benzenberg</td>
</tr>
<tr>
<td>Industrial Electronics Group</td>
<td>Butch E. Teal</td>
</tr>
<tr>
<td>Infra-Red Building and Power Service</td>
<td>Thomas McDonald</td>
</tr>
<tr>
<td>M&L Power Systems Maintenance, Inc.</td>
<td>Milind Bagle</td>
</tr>
<tr>
<td>Magna Group</td>
<td>Kerry Heid</td>
</tr>
<tr>
<td>MET Electrical Testing Co., Inc.</td>
<td>William McKenzie</td>
</tr>
<tr>
<td>Nationwide Electrical Testing, Inc.</td>
<td>Shashikant B. Bagle</td>
</tr>
</tbody>
</table>
NETA Accredited Companies

North Central Electric, Inc. Robert Messina
Northern Electrical Testing, Inc. Lyle Detterman
Orbis Engineering Field Services Ltd. Lorne Gara
Phasor Engineering Rafael Castro
Potomac Testing, Inc. Ken Bassett
Power & Generation Testing, Inc. Mose Ramieh
Power Engineering Services, Inc. Miles R. Engelke
Power Plus Engineering, Inc. Salvatore Mancuso
Power Products & Solutions, Inc. Ralph Patterson
Power Services, Inc. Gerald Bydash
Power Systems Testing Co. David Huffman
Powertech Services, Inc. Jean A. Brown
Precision Testing Group Glenn Stuckey
PRIT Service, Inc. Roderic Hageman
Reuter and Hanney, Inc. Michael Reuter
Shermco Industries, Inc. Ron Widup
Sigma Six Solutions, Inc. John White
Taurus Power and Controls, Inc. Scott L. Kinney
Tony Demaria Electric, Inc. Anthony Demaria
Utilities Instrumentation Service, Inc. Gary Walls
Utility Service Corporation Alan Peterson
NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.
PREFACE

It is recognized by the Association that the needs for acceptance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

The Document Structure
The document is divided into twelve separate and defined sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>General Scope</td>
</tr>
<tr>
<td>Section 2</td>
<td>Applicable References</td>
</tr>
<tr>
<td>Section 3</td>
<td>Qualifications of Testing Organization and Personnel</td>
</tr>
<tr>
<td>Section 4</td>
<td>Division of Responsibility</td>
</tr>
<tr>
<td>Section 5</td>
<td>General</td>
</tr>
<tr>
<td>Section 6</td>
<td>Power System Studies</td>
</tr>
<tr>
<td>Section 7</td>
<td>Inspection and Test Procedures</td>
</tr>
<tr>
<td>Section 8</td>
<td>System Function Test</td>
</tr>
<tr>
<td>Section 9</td>
<td>Thermographic Survey</td>
</tr>
<tr>
<td>Section 10</td>
<td>Electromagnetic Field Testing</td>
</tr>
<tr>
<td>Tables</td>
<td>Reference Tables</td>
</tr>
<tr>
<td>Appendices</td>
<td>Various Informational Documents</td>
</tr>
</tbody>
</table>

Section 7 Structure
Section 7 is the main body of the document with specific information on what to do relative to the inspection and acceptance testing of electrical power distribution equipment and systems. It is not intended that this document list how to test specific pieces of equipment or systems.

Expected Test Results
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, three main bodies of information:

1. Visual and Mechanical Inspection
2. Electrical Tests
3. Test Values
Results of Visual and Mechanical Inspections

Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section 3.1 Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.1.7.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.3.1.2, the expected results for that particular task are listed within Section 3.1, with reference back to the original task description on item 7.1.1.7.2.
Results of Electrical Tests

Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.2.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.
Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer’s published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

1. Does another listed test provide similar information?
2. How does the cost of the test compare to the cost of other tests providing similar information?
3. How commonplace is the test procedure? Is it new technology?

Manufacturer’s Instruction Manuals
It is important to follow the recommendations contained in the manufacturer’s published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary
The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test data, including manufacturer’s published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.

Standards Review Council
InterNational Electrical Testing Association

Charles K. Blizard, Sr.
Timothy J. Cotter
Diane W. Hageman
Roderic L. Hageman
Ralph Patterson
Alan D. Peterson
Jayne Tanz
Ron Widup
CONTENTS

1. **GENERAL SCOPE** ... 1

2. **APPLICABLE REFERENCES**
 2.1 Codes, Standards and Specifications .. 2
 2.2 Other Publications .. 8
 2.3 Contact Information ... 8

3. **QUALIFICATIONS OF TESTING ORGANIZATION AND PERSONNEL**
 3.1 Testing Organization ... 11
 3.2 Testing Personnel ... 11

4. **DIVISION OF RESPONSIBILITY**
 4.1 The Owner’s Representative ... 12
 4.2 The Testing Organization .. 12

5. **GENERAL**
 5.1 Safety and Precautions ... 13
 5.2 Suitability of Test Equipment ... 13
 5.3 Test Instrument Calibration ... 14
 5.4 Test Report .. 15

6. **POWER SYSTEM STUDIES**
 6.1 Short-Circuit Studies .. 16
 6.2 Coordination Studies .. 17
 6.3 Arc-Flash Hazard Analysis ... 18
 6.4 Load Flow Studies .. 20
 6.5 Stability Studies ... 21
 6.6 Switching Transients Studies - Reserved ... 22
 6.7 Motor-Starting Studies - Reserved .. 22
 6.8 Harmonic-Analysis Studies ... 23
 6.9 Ground-Mat Studies - Reserved ... 24
 6.10 Cable-Ampacity Studies - Reserved ... 24
 6.11 Reliability Studies - Reserved ... 24

7. **INSPECTION AND TEST PROCEDURES**
 7.1 Switchgear and Switchboard Assemblies ... 25
 7.2.1.1 Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small ... 29
 7.2.1.2 Transformers, Dry-Type, Air-Cooled, Large.. 31
 7.2.2 Transformers, Liquid-Filled .. 34
 7.3.1 Cables, Low-Voltage, Low-Energy - Reserved .. 38
 7.3.2 Cables, Low-Voltage, 600-Volt Maximum ... 39
 7.3.3 Cables, Medium- and High-Voltage ... 41
 7.4 Metal-Enclosed Busways .. 44
 7.5.1.1 Switches, Air, Low-Voltage ... 46
 7.5.1.2 Switches, Air, Medium-Voltage, Metal-Enclosed ... 48
 7.5.1.3 Switches, Air, Medium- and High-Voltage, Open ... 51
 7.5.2 Switches, Oil, Medium-Voltage ... 54
 7.5.3 Switches, Vacuum, Medium-Voltage ... 57
 7.5.4 Switches, SF₆, Medium-Voltage ... 60
 7.5.5 Switches, Cutouts .. 63
 7.6.1.1 Circuit Breakers, Air, Insulated-Case/Molded-Case .. 65
 7.6.1.2 Circuit Breakers, Air, Low-Voltage Power ... 68
 7.6.1.3 Circuit Breakers, Air, Medium-Voltage ... 71
CONTENTS (continued)

7.6.2 Circuit Breakers, Oil, Medium- and High-Voltage ... 75
7.6.3 Circuit Breakers, Vacuum, Medium-Voltage .. 80
7.6.4 Circuit Breakers, SF₆ ... 84
7.7 Circuit Switchers.. 88
7.8 Network Protectors, 600-Volt Class ... 91
7.9.1 Protective Relays, Electromechanical and Solid-State .. 94
7.9.2 Protective Relays, Microprocessor-Based .. 101
7.10 Instrument Transformers.. 103
7.11 Metering Devices .. 108
7.12.1.1 Regulating Apparatus, Voltage, Step Voltage Regulators 110
7.12.1.2 Regulating Apparatus, Voltage, Induction Regulators .. 114
7.12.2 Regulating Apparatus, Current - Reserved .. 118
7.12.3 Regulating Apparatus, Load Tap-Changers .. 119
7.13 Grounding Systems .. 122
7.14 Ground-Fault Protection Systems, Low-Voltage .. 124
7.15.1 Rotating Machinery, AC Induction Motors and Generators 127
7.15.2 Rotating Machinery, Synchronous Motors and Generators 131
7.15.3 Rotating Machinery, DC Motors and Generators .. 137
7.16.1.1 Motor Control, Motor Starters, Low-Voltage ... 140
7.16.1.2 Motor Control, Motor Starters, Medium-Voltage .. 142
7.16.2.1 Motor Control, Motor Control Centers, Low-Voltage ... 146
7.16.2.2 Motor Control, Motor Control Centers, Medium-Voltage 147
7.17 Adjustable Speed Drive Systems .. 148
7.18.1.1 Direct-Current Systems, Batteries, Flooded Lead-Acid ... 151
7.18.1.2 Direct-Current Systems, Batteries, Nickel-Cadmium - Reserved 154
7.18.1.3 Direct-Current Systems, Batteries, Valve-Regulated Lead-Acid 155
7.18.2 Direct-Current Systems, Chargers .. 157
7.18.3 Direct-Current Systems, Rectifiers - Reserved .. 159
7.19.1 Surge Arresters, Low-Voltage .. 160
7.19.2 Surge Arresters, Medium- and High-Voltage .. 162
7.20.1 Capacitors and Reactors, Capacitors .. 164
7.20.2 Capacitors and Reactors, Capacitor Control Devices - Reserved 166
7.20.3.1 Capacitors and Reactors, Reactors, Shunt and Current-Limiting, Dry-Type 167
7.20.3.2 Capacitors and Reactors, Reactors, Shunt and Current-Limiting, Liquid-Filled 169
7.21 Outdoor Bus Structures .. 173
7.22.1 Emergency Systems, Engine Generator ... 175
7.22.2 Emergency Systems, Uninterruptible Power Systems ... 177
7.22.3 Emergency Systems, Automatic Transfer Switches ... 180
7.23 Communications - Reserved ... 183
7.24.1 Automatic Circuit Reclosers and Line Sectionalizers, Automatic Circuit Reclosers, Oil/Vacuum .. 184
7.24.2 Automatic Circuit Reclosers and Line Sectionalizers, Automatic Line Sectionalizers, Oil .. 188
8. SYSTEM FUNCTION TESTS ... 192
9. THERMOGRAPHIC SURVEY ... 193
10. ELECTROMAGNETIC FIELD TESTING ... 194
11. CORONA STUDIES - Reserved .. 196
TABLES
100.1 Insulation Resistance Test Values, Electrical Apparatus and Systems..198
100.2 Switchgear Withstand Test Voltages..199
100.3 Recommended Dissipation Factor/Power Factor at 20° C; Liquid-Filled Transformers,
Regulators, and Reactors, Acceptance Test Values..200
100.4 Insulating Fluid Limits
100.4.1 Test Limits for New Insulating Oil Received in New Equipment ...201
100.4.2 Test Limits for Silicone Insulating Liquid in New Transformers...201
100.4.3 Typical Values for Less-Flammable Hydrocarbon Insulating Liquid.................................202
100.5 Transformer Insulation Resistance, Acceptance Testing..203
100.6 Medium-Voltage Cables, Acceptance Test Values
100.6.1 DC Test Voltages ..204
100.6.2 AC Test Voltages ..205
100.6.3 Partial Discharge Requirements ..206
100.6.4 Very Low Frequency Testing Levels ...206
100.7 Inverse Time Trip Test at 300% of Rated Continuous Current,
Molded-Case Circuit Breakers..207
100.8 Instantaneous Trip Tolerances for Field Testing of Circuit Breakers..208
100.9 Instrument Transformer Dielectric Tests, Field Acceptance..209
100.10 Maximum Allowable Vibration Amplitude..210
100.11 Reserved ..211
100.12 US Standard Fasteners, Bolt Torque Values for Electrical Connections
100.12.1 Heat-Treated Steel - Cadmium or Zinc Plated ..212
100.12.2 Silicon Bronze Fasteners ..213
100.12.3 Aluminum Alloy Fasteners ...213
100.12.4 Stainless Steel Fasteners ..214
100.13 SF6 Gas Tests ..215
100.14 Insulation Resistance Conversion Factors
100.14.1 Test Temperatures to 20° C...216
100.14.2 Test Temperatures to 40° C...217
100.15 High-Potential Test Voltage, Automatic Circuit Reclosers..218
100.16 High-Potential Test Voltage for Acceptance Test of Line Sectionalizers.................................219
100.17 Dielectric Withstand Test Voltages, Metal-Enclosed Bus..220
100.18 Thermographic Survey, Suggested Actions Based on Temperature Rise..............................221
100.19 Dielectric Withstand Test Voltages, Electrical Apparatus Other than Inductive Equipment...222
100.20 Rated Control Voltages and their Ranges for Circuit Breakers
100.20.1 Circuit Breakers..223
100.20.2 Solenoid-Operated Devices...224
100.21 Accuracy of IEC Class TP Current Transformers Error Limit..225
100.22 Minimum Radii for Power Cable, Single & Multiple Conductor Cables with Interlocked
Armor, Smooth or Corrugated Aluminum Sheath or Lead Sheath...226
CONTENTS (continued)

APPENDICES
Appendix A - Definitions...229
Appendix B - Reserved..231
Appendix C - About the InterNational Electrical Testing Association ...232
Appendix D - Form for Comments..234
Appendix E - Form for Proposals ..235
Appendix F - NETA Affiliate and Publications Information ..236
Appendix G - Affiliate Application and Publications Order Form..237
1. GENERAL SCOPE

1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for initial energization of electrical power distribution equipment and systems.

2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational and within applicable standards and manufacturer’s tolerances and that the equipment and systems are installed in accordance with design specifications.

3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety issues associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.