NSF International, an independent, not-for-profit, non-governmental organization, is dedicated to being the leading global provider of public health and safety-based risk management solutions while serving the interests of all stakeholders.
NSF/ANSI 240 – 2017

NSF International Standard/
American National Standard
for Wastewater Treatment Systems –

Drainfield Trench Product Sizing for Gravity Dispersal
Onsite Wastewater Treatment and Dispersal Systems

Standard Developer
NSF International

NSF International Board of Directors
Designated as an ANSI Standard
January 21, 2017

American National Standards Institute
Disclaimers

NSF, in performing its functions in accordance with its objectives, does not assume or undertake to discharge any responsibility of the manufacturer or any other party. The opinions and findings of NSF represent its professional judgment. NSF shall not be responsible to anyone for the use of or reliance upon this Standard by anyone. NSF shall not incur any obligation or liability for damages, including consequential damages, arising out of or in connection with the use, interpretation of, or reliance upon this Standard.

NSF Standards provide basic criteria to promote sanitation and protection of the public health. Provisions for mechanical and electrical safety have not been included in this Standard because governmental agencies or other national standards-setting organizations provide safety requirements.

Participation in NSF Standards development activities by regulatory agency representatives (federal, local, state) shall not constitute their agency's endorsement of NSF or any of its Standards.

Preference is given to the use of performance criteria measurable by examination or testing in NSF Standards development when such performance criteria may reasonably be used in lieu of design, materials, or construction criteria.

The illustrations, if provided, are intended to assist in understanding their adjacent standard requirements. However, the illustrations may not include all requirements for a specific product or unit, nor do they show the only method of fabricating such arrangements. Such partial drawings shall not be used to justify improper or incomplete design and construction.

Unless otherwise referenced, the annexes are not considered an integral part of NSF Standards. The annexes are provided as general guidelines to the manufacturer, regulatory agency, user, or certifying organization.

\[1\] The information contained in this Disclaimer is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. Therefore, this Disclaimer may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Standard.
Contents

1 General ... 1
 1.1 Purpose .. 1
 1.2 Scope ... 1
 1.3 Alternate materials, design, and construction .. 1
 1.4 Classification of related products ... 2
 1.5 Product literature .. 2
 1.6 Design and construction ... 2
 1.7 Sample Collection .. 2

2 Normative references ... 3

3 Definitions ... 3

4 Long term acceptance rate (LTAR) evaluation ... 6
 4.1 Sizing relationships for related products .. 6
 4.2 Study limitations ... 6
 4.3 Performance testing and evaluation .. 6

5 Field performance assessment (FPA) .. 14
 5.1 Study conditions and limitations ... 14
 5.2 FPA study type weighting .. 15
 5.3 Data quality attributes and values .. 15
 5.4 Expert panel (EP) appointments ... 18
 5.5 Development of individual FPA scoring methodology and endpoint score 18
 5.6 Minimum endpoint score required to claim conformance .. 19
 5.7 Final report ... 19

Annex A ... A1
This page is intentionally left blank.
Foreword

This American National Standard, NSF/ANSI 240 Drainfield Trench Product Sizing for Gravity Dispersal Onsite Wastewater Treatment and Dispersal Systems Standard, has been developed as part of the ongoing efforts of interested parties to establish minimum material, design, construction, and performance requirements for comparing gravity dispersal drainfield products based on hydraulic performance used in place of conventional coarse aggregate within onsite wastewater treatment and dispersal systems. This Standard also specifies the minimum literature that manufacturers shall supply to authorized representatives.

Two alternate methods for establishing the sizing relationship are provided:

(1) The Long Term Acceptance Rate (LTAR) establishes a methodology for determining the drainfield sizing relationship between gravity fed natural coarse aggregate and alternative manufactured products by measuring their relative long term acceptance rates (LTAR). The evaluation shall be conducted at an approved testing organization where independent variables are suitably controlled. Bottom area sizing and infiltration rate comparisons are based on test center data collected using multiple product and control trench cells under accelerated hydraulic loading conditions.

(2) The Field Performance Assessment (FPA) methodology evaluates relative failure rate studies of systems constructed using alternatives to conventional natural coarse aggregate. This methodology compares drainfields’ bottom area (footprint) with respect to the system’s hydraulic performance (hydraulic failure) to arrive at a suitable bottom area relationship. Technologies in use for 10 or more years may apply for certification under this option.

The comparative treatment performance of alternative products compared to performance of conventional systems is not within the scope of this Standard.

Issue 2

NSF/ANSI 240 was originally published in 2011. As part of the NSF standards maintenance process, it is due for its 5-year reaffirmation. No changes have been made to the standard.

This Standard was developed by the NSF Joint Committee on Wastewater Technology using the consensus process described in the American National Standards Institute.

Suggestions for improvements of this Standard are welcome. This Standard is maintained on a Continuous Maintenance schedule and can be opened for comment at any time. Comments should be sent to Chair, Joint Committee on Wastewater Technology, c/o NSF International, Standards Department, PO Box 130140, Ann Arbor, Michigan 48113-0140, USA.

2 The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI’s requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Standard.
This page is intentionally left blank.
NSF International Standard
for Wastewater Treatment Systems –

Drainfield Trench Product Sizing for Gravity Dispersal
Onsite Wastewater Treatment and Dispersal Systems

1 General

1.1 Purpose

The purpose of this Standard is to establish minimum material, design, construction, and performance requirements for comparing gravity dispersal drainfield products based on hydraulic performance used in place of conventional coarse aggregate within onsite wastewater treatment and dispersal systems. This Standard also specifies the minimum literature that manufacturers shall supply to authorized representatives. Two alternate protocols for establishing the sizing relationship are provided.

1.1.1 Long term acceptance rate (LTAR)

In 4, the long term acceptance rate (LTAR) of gravity dispersal drainfield products using alternatives is compared to conventional coarse aggregate trench media. Bottom area sizing and infiltration rate comparisons are based on test center data collected using multiple product and control trench cells under accelerated hydraulic loading conditions. Independent variables that may affect hydraulic infiltration shall be controlled.

1.1.2 Field performance assessment (FPA)

Field Performance Assessment (FPA) methodology evaluates relative failure rate studies of systems constructed using alternatives to conventional natural coarse aggregate. This methodology compares drainfields’ bottom area (footprint) with respect to the system’s hydraulic performance (hydraulic failure) to arrive at a suitable bottom area relationship. Manufacturers of general use products, as defined in 3, which include technologies in use for 10 or more years, may apply for certification under this Standard, including a statement of the bottom area relationship.

1.2 Scope

This Standard provides a methodology to compare, assess and document product sizing criteria for alternative or proprietary products with respect to conventional coarse aggregate used in onsite wastewater dispersal drainfields, based on comparative hydraulic performance.

The comparative treatment performance of alternative products compared to performance of conventional systems is not within the scope of this Standard.

1.3 Alternate materials, design, and construction

While specific materials, designs, and constructions may be stipulated in this Standard, products that incorporate alternate materials, designs, or constructions may be acceptable when it is verified that such products meet the applicable requirements.