American National Standard

For Nuclear Materials —
Uranium Hexafluoride —
Packagings for Transport
American National Standard
for Nuclear Materials —

Uranium Hexafluoride – Packagings for Transport

Secretariat
Institute for Nuclear Materials Management

Approved
American National Standards Institute, Inc.
December 2019
AMERICAN NATIONAL STANDARD

Approval of an American National Standard requires review by the American National Standards Institute (ANSI) to determine whether the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. “Substantial agreement” means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he or she has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

ANSI does not develop standards and will in no circumstances give interpretation on any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of ANSI. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of ANSI require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing ANSI.

Published by

American National Standards Institute, Inc.
25 West 43rd Street, New York, NY 10036

Copyright ©2019 by Institute for Nuclear Materials Management

All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.

Printed in the United States of America
Contents

Table of Contents

1. Scope and Purpose .. 1
 1.1 Scope... 1
 1.2 Purpose... 1
2. Normative References ... 1
 2.1 Bibliography ... 4
3. Definitions .. 4
4. Quality Assurance ... 6
5. General Requirements for Cylinders ... 6
 5.1 Design of Cylinders ... 6
 5.1.1 Design conditions .. 7
 5.2 Fabrication of Cylinders .. 7
 5.2.1 General ... 7
 5.2.2 Radiography and other nondestructive examinations (NDEs) 8
 5.2.3 Testing ... 8
 5.2.4 Cylinder marking .. 9
 5.3 Cleanliness .. 10
 5.3.1 New cylinders .. 10
 5.3.2 In-service cylinders .. 11
 5.3.3 Cylinder outer surfaces ... 11
 5.4 In-Service Inspections and Tests ... 11
 5.4.1 Routine operational inspections ... 11
 5.4.2 Periodic inspections and tests .. 11
 5.4.2.1 One year periodic inspections and tests ... 11
 5.4.2.2 Five year periodic inspections and tests ... 11
 5.5 Cylinder Maintenance/Repair .. 12
 5.6 Cylinder Skirt Holes for the 48A, 48F, 48X, and 48Y Valve Protector Alternate 13
 5.7 Standard Cylinders .. 13
6. Specific Requirements for Cylinders .. 15
 6.1 15 Cylinder .. 15
 6.1.1 Design conditions ... 15
 6.1.2 Materials .. 15
 6.1.3 Fabrication .. 15
 6.1.4 Radiography .. 15
 6.1.5 Valve .. 15
 6.1.6 Plug ... 15
 6.1.7 Valve and plug installation ... 15
 6.1.8 Testing ... 15
 6.1.9 Cylinder marking .. 16
 6.1.10 Cleaning .. 16
 6.1.11 Certification .. 16
 6.1.12 External surface treatment ... 16
6.2 2S Cylinder
6.2.1 Design conditions
6.2.2 Materials
6.2.3 Fabrication
6.2.4 Radiography
6.2.5 Valve
6.2.6 Plug
6.2.7 Valve and plug installation
6.2.8 Testing
6.2.9 Cylinder marking
6.2.10 Cleaning
6.2.11 Certification
6.2.12 External surface treatment
6.3 5B Cylinder
6.3.1 Design conditions
6.3.2 Materials
6.3.3 Fabrication
6.3.4 Radiography
6.3.5 Valve
6.3.6 Plug
6.3.7 Valve and plug installation
6.3.8 Testing
6.3.9 Cylinder marking
6.3.10 Cleaning
6.3.11 Certification
6.3.12 External surface treatment
6.4 8A Cylinder
6.4.1 Design conditions
6.4.2 Materials
6.4.3 Fabrication
6.4.4 Radiography
6.4.5 Valve
6.4.6 Plug
6.4.7 Valve and plug installation
6.4.8 Testing
6.4.9 Cylinder marking
6.4.10 Cleaning
6.4.11 Certification
6.4.12 External surface treatment
6.5 12B Cylinder
6.5.1 Design conditions
6.5.2 Materials
6.5.3 Fabrication
6.5.4 Radiography
6.5.5 Valve
6.5.6 Plug
6.5.7 Valve and plug installation
6.5.8 Testing
6.5.9 Cylinder marking
6.5.10 Cleaning
6.5.11 Certification
6.5.12 External surface treatment

6.6 30B Cylinder
- Design conditions
- Materials
- Fabrication
- Radiography
- Valve
- Plug
- Valve and plug installation
- Testing
- Cylinder marking
- Cleaning
- Certification
- External surface treatment

6.7 30C Cylinder
- Design conditions
- Materials
- Fabrication
- Radiography and nondestructive examination (NDE)
- Valve
- Plug
- Valve and plug installation
- Testing
- Cylinder marking
- Cleaning
- Certification
- External surface treatment

6.8 48G Cylinder
- Design conditions
- Materials
- Fabrication
- Radiography
- Valve
- Plug
- Valve and plug installation
- Testing
- Cylinder marking
- Cleaning
- Certification
- External surface treatment

6.9 48Y or 48X Cylinder
- Design conditions
- Materials
- Fabrication
- Radiography
- Valve
- Plug
- Valve and plug installation
- Testing
- Cylinder marking
- Cleaning
7. General Requirements for Cylinder Valves and Plugs .. 27
7.1 Manufacturing Process for Valves and Plugs ... 27
 7.1.1 Process ... 27
 7.1.2 Materials ... 28
 7.1.3 Material certification .. 28
 7.1.4 Manufacturing ... 28
 7.1.5 Material stress-relief specifications ... 29
 7.1.6 Cleaning ... 29
 7.1.7 Tinning of valves or plugs specified in 8.2, 8.3, and 8.4 29
 7.1.8 Assembly of valves specified in 8.2 and 8.3 ... 30
 7.1.9 Testing of valves specified in 8.2 and 8.3 ... 30
 7.1.10 Packaging .. 31
 7.1.11 Certification .. 31
7.2 Installation of Valves and Plugs Specified in 8.3 and 8.4 31
7.3 Valve Maintenance on Cylinders in Use ... 32
8. Specific Requirements for Cylinder Valves and Plugs .. 32
8.1 Valves for 1S and 2S Cylinders ... 32
 8.1.1 Design conditions ... 32
 8.1.2 Materials ... 32
8.2 Cylinder Valve 50 (3/4 in.) .. 32
 8.2.1 Design conditions ... 32
 8.2.2 Materials ... 32
 8.2.3 Material certification .. 33
 8.2.4 Manufacturing ... 33
 8.2.5 Cleaning ... 33
 8.2.6 Tinning .. 33
 8.2.7 Assembly ... 33
 8.2.8 Testing ... 33
8.3 Cylinder Valve 51 (1 in.) ... 34
 8.3.1 Design conditions ... 34
 8.3.2 Materials ... 34
 8.3.3 Material certification .. 34
 8.3.4 Manufacturing ... 34
 8.3.5 Cleaning ... 34
 8.3.6 Tinning .. 35
 8.3.7 Assembly ... 35
 8.3.8 Testing ... 35
8.4 Plug .. 35
 8.4.1 Design conditions ... 35
 8.4.2 Materials ... 35
 8.4.3 Machining ... 36
 8.4.4 Cleaning ... 36
 8.4.5 Tinning .. 36
 8.4.6 Certification ... 36
9. Outer Protection .. 36
10. Shipping ... 37
 10.1 Full Cylinders ... 37
 10.2 Heeled Cylinders ... 37
 10.3 Clean and washed out Cylinders .. 37
10.4 New Cylinders ... 37
10.5 Valve Protectors ... 37
10.6 Seals ... 37
10.7 Marking, Labeling, and Placarding 37
Tables

1. UF6 cylinder design conditions .. 7
2. Cylinder marking ... 9
3. Minimum thickness .. 12
4. Standard cylinder data .. 14
5. Modified aluminum bronze UNS C63600 chemical composition limits ... 28
6. Maximum heel quantities .. 37
Foreword

(This foreword is not part of American National Standard N14.1–2019.)

The Accredited Standards Committee on Packaging and Transport of Radioactive and Non-Nuclear Hazardous Materials, N14, under whose jurisdiction this standard was developed, has the following scope.

Standards for the packaging and transportation of fissile and radioactive materials, non-nuclear hazardous materials, including waste and mixed materials, but not including movement or handling during processing and manufacturing operations.

Packaging of uranium hexafluoride (UF₆) for transport is an essential part of a safe and economical nuclear industry. This standard presents information on UF₆ cylinders, valves, outer protection, and shipping.

The packaging and transport of UF₆ is subject to regulation by government agencies having jurisdiction over packaging and transport. This standard does not take precedence over applicable U.S. Nuclear Regulatory Commission, U.S. Department of Energy, U.S. Department of Transportation, or other governmental regulations.

The Committee recognizes that this standard is also used for international transportation of UF₆, where international transport regulations, based on IAEA SSR-6 (Regulations for the Safe Transport of Radioactive Material), apply. SSR-6 uses ISO 7195 as reference for packaging of UF₆ for transport. ISO 7195 has been developed from and is based on previous issues of this standard and covers the same standard cylinders. The Committee has participated and will continue to participate in the development and maintenance of ISO 7195.

This standard includes references to regulatory material. For more detailed information, the user of this standard is encouraged to use the appropriate regulatory document.

Suggestions for improvement of this standard are welcome. They should be sent to the Institute of Nuclear Materials Management, 60 Revere Drive, Suite 500, Northbrook, IL 60062.
This standard was prepared and approved for submittal to ANSI by the Accredited Standards Committee on Packaging and Transport of Radioactive and Non-Nuclear Hazardous Material, N14. Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the N14 Committee comprised the following members.

Matthew R. Feldman, Chair
William H. Lake, Vice-Chair
Ronald B. Natali, Secretary

Organization Represented .. Name of Representative
Health Physics Society .. R. Parker
U.S. Department of Transportation R. Boyle
U.S. Nuclear Regulatory Commission B. White
U.S. Department of Energy ... J. Shuler
U.S. DOE National Nuclear Security Administration A. Al-Daouk
Commercial Vehicle Safety Alliance C. Smith

Individual Members
Al-Daouk, Ahmad M. .. Hawk, Mark B. .. Sellmer, Todd E.
Araniz, Enrique (Rick) A. ... Hummer, James H. Shuler, Dr. James M.
Bellamy, J. Stephen .. Kapoor, Ashok ... Smith, Carlisle
Best, Ralph E. .. Lake, William H. ... Vaughan, Dr. Robert A.
Boyle, Richard ... Mohamed, Dr. Ashraf Viebrock, James M.
Campbell, Mark .. Nolan, Donald J. .. Wakeman, Brian H.
Charette, Marc-Andre .. O’Connor, Stephen C. Walker, Randy
Clark, Gary L., P.E. .. Opperman, Erich ... Wangler, Michael E.
Darrough, Dr. M. Elizabeth .. Parker, Dr. Roy ... Warriner, Doyle J.
Eyre, Phillip ... Pope, Ronald B. .. Wassenaar, Dr. Richard
Feldman, Matt .. Porter, Steven A. .. White, Benard (Bernie)
Garg, Rajesh ... Rawl, Richard R. .. Woodbury, John (Woody)
Hansen, Steve ... Rymer, Andrew C.

Members of the subcommittee N14.1 on Uranium Hexafluoride – Packagings for Transport who participated in the reaffirmation of this standard are as follows.

Steven Hansen, Chair

Alderson, Joseph (Butch) .. Fucich, Mark ... Rohof, Han
Allshouse, Rich .. Grossi, Claire ... Tarantino, David
Boyle, Richard .. Grossi, Claire ... Tarantino, David
Charette, Marc-Andre ... Kent, Norman ... Warmkessel, Glenn
Conrad, Brooke ... Malesys, Pierre .. White-Horton, Jessica
Dekker, Ben .. Olson, Don .. Woodcock, Jeff
Desnoyers, Bruno .. Plessy, Olivier ... Woodcock, Jeff
1. Scope and Purpose

1.1 Scope
This standard provides criteria for packagings used for transport of uranium hexafluoride (UF₆). It includes specific information on design and fabrication requirements for the procurement of new UF₆ packagings for transportation of 0.2205 lb (0.1 kg) or more of UF₆. This standard also defines the requirements for in-service inspections, cleanliness, and maintenance for packagings in service. Packagings currently in service and not specifically defined in this standard are acceptable for use, provided that they are used within their original design limitations and are inspected, tested, and maintained so as to comply with the intent of this standard. Also included are cylinder loadings, shipping requirements, and requirements for valves, plugs, and valve protectors.

Imperial units shown in this standard may be converted to metric units and rounded when not in conflict with the functional specification.

1.2 Purpose
This standard is intended to provide for compatibility of UF₆ packagings among different users within the nuclear industry. It will assist in providing guidance and criteria for shipment of UF₆.

2. Normative References

The following standards and references contain provisions, which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards and references are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards and references indicated below. Codes and standards with corresponding versions using metric units may be used interchangeably.

With respect to this standard, American Society of Mechanical Engineers (ASME) material and filler metal specifications, identified by the prefix “S,” are interchangeable with corresponding ASTM International (ASTM) and American Welding Society (AWS) specifications referenced herein.

ANSI/ASME, Boiler and Pressure Vessel Code 2017
ANSI/ASME B1.1-2003 (R2018), Unified Inch Screw Threads, (UN And UNR Thread Form)
ANSI/ASME B1.5-1997(R2014), Acme Screw Threads
ANSI/ASME B1.20.1-2013 (R2018), Pipe Threads, General Purpose (Inch)