ANSI N14.1-2001

American National Standard
for Nuclear Materials –
Uranium Hexafluoride –
Packaging for Transport

Secretariat
Institute of Nuclear Materials Management

Approved February 1, 2001
American National Standards Institute, Inc.
Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td>1 Scope and Purpose</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>3</td>
</tr>
<tr>
<td>4 Quality Assurance</td>
<td>5</td>
</tr>
<tr>
<td>5 Packaging Requirements</td>
<td>5</td>
</tr>
<tr>
<td>6 Cylinders</td>
<td>6</td>
</tr>
<tr>
<td>7 Outer Protective Packagings</td>
<td>36</td>
</tr>
<tr>
<td>8 Shipping</td>
<td>37</td>
</tr>
</tbody>
</table>

Appendixes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Cleaning Procedures for New Cylinders</td>
<td>65</td>
</tr>
<tr>
<td>B Method for Large Cylinder Decontamination for Residual UF₆ Greater than 1.0wt% ²³⁵U</td>
<td>66</td>
</tr>
<tr>
<td>C Activity of UF₆ Shipping Cylinders</td>
<td>68</td>
</tr>
<tr>
<td>D Physical Properties of UF₆</td>
<td>71</td>
</tr>
<tr>
<td>E Examples of a Cylinder Procurement Specification</td>
<td>73</td>
</tr>
<tr>
<td>F Examples of Acceptable and Unacceptable Damage to UF₆ Cylinders</td>
<td>79</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard UF6 Cylinder Data</td>
<td>7</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UF₆ Cylinder 1S (See 6.4)</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>UF₆ Cylinder 2S (See 6.5)</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>UF₆ Cylinder 5B (See 6.6)</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>UF₆ Cylinder 8A (See 6.7)</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>UF₆ Cylinder 12A (See 6.8)</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>UF₆ Cylinder 12B (See 6.9)</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>UF₆ Cylinder 30B (See 6.10)</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>UF₆ Cylinder 48X (See 6.11)</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>UF₆ Cylinder 48Y (See 6.12)</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>UF₆ Cylinder 48G (See 6.13)</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>UF₆ Cylinder 50 (3/4 Inch) (See 6.14)</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>UF₆ Cylinder 50 (1 Inch) (See 6.15)</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>UF₆ Cylinder Nameplates</td>
<td>63</td>
</tr>
</tbody>
</table>
Foreword (This foreword is not part of American National Standard ANSI N14.1-2001.)

This standard was developed under the procedures of the American National Standards Institute by Subcommittee N14-8 (later changed to N14-1) of Accredited Standards Committee N14 on Transportation of Fissile and Radioactive Materials. The secretariat of N14 is presently held by the Institute of Nuclear Materials Management. At the time this standard was being developed, it was held by the American Insurance Association.

The N14 Committee has the following scope:

Standards for the packaging and transportation of fissile and radioactive materials but not including movement or handling during processing and manufacturing operations.

Packaging of uranium hexafluoride (UF₆) for transport is an essential part of a safe and economical nuclear industry. This standard presents information on UF₆ cylinders, valves, protective packages, and shipping.

The packaging and transport of UF₆ is subject to regulation by government agencies having jurisdiction over packaging and transport. This standard does not take precedence over applicable U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE), U.S. Department of Transportation (DOT), or other governmental regulations.

This standard covers only those standard cylinders that meet all of the acceptance criteria for UF₆ handling and is recommended for all new cylinder construction. Cylinders currently in service and not in accordance with this standard are acceptable for continued use, provided that they are inspected, tested, and maintained so as to comply with the intent of this standard and are used within their original design limitations.

It should be noted that some technical regulatory material has been restated in this standard. It was determined by the subcommittee that this is appropriate and convenient and would assist the user of the standard. For more detailed information, the user is encouraged to use the appropriate regulatory document.

Suggestions for improvement of this standard will be welcome. They should be sent to the Institute of Nuclear Materials Management, 60 Revere Drive, Suite 500, Northbrook, IL 60062.

This standard was processed and approved for submittal to ANSI by Accredited Standards Committee on Transportation of Fissile and Radioactive Materials, N14. Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time this revision of the standard was approved, the N14 Committee had the following members:

John W. Arendt, Chair
Rick Rawl, Vice Chair
L. Paul Crawford, Secretary

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Insurance Service Group</td>
<td>S.M. Fastman</td>
</tr>
<tr>
<td>American Nuclear Society ..</td>
<td>D.M. Dawson</td>
</tr>
<tr>
<td>American Society for Testing and Materials</td>
<td>Alexander M. Perritt</td>
</tr>
<tr>
<td>Atomic Industrial Committee on Transportation</td>
<td>H. Walchli</td>
</tr>
<tr>
<td>Center for Devices and Radiological Health</td>
<td>E. Tupin</td>
</tr>
<tr>
<td>Center for Devices and Radiological Health (Alt.)</td>
<td>C.P. Froom (Alt.)</td>
</tr>
</tbody>
</table>
Organization Represented | Name of Representative
--- | ---
Conference of Radiation Control | William Pitchford
Contract Traffic Managers Association | Max D. Ruska
Factory Mutual System | P.H. Dobson
Health Physics Society | Kevin Nelson
Institute of Nuclear Materials Management | J.W. Arendt
International Association of Chiefs of Police | R.H. Sostkowi
International Atomic Energy Agency | H.A. Selling
Military Traffic Management Command | C.E. Radford
U.S. Coast Guard | Emmanuel Pfersich
U.S. Department of Energy | M.E. Wangler
U.S. Department of Transportation | Richard Boyle
U.S. Environmental Protection Agency | J. Scott Telofski
U.S. Nuclear Regulatory Commission | E.P. Easton (Alt.)

Individual Members

M. E. Bennett | P. C. Gregory | Dr. J. J. Oras (Alt.)
Dr. E. Bentz | A. W. Grella | R. W. Peterson
R. Best | R. M. Grenier | Paul J. Pomares
G. Burbidge | R. T. Haelsig | R. Pope
A. E. Castagnacci | Cynthia Hilton | R. R. Rawl
C. A. Caves | J. Hummer | P. C. Rieke
John M. Cece | L. Jackson | R. Ryan
J. R. Clark | B. Jody, Jr. | F. A. Seiler
A. Colburn | G. Blair Johnson | A. Spiegelman
Daren Condrey | Jim R. Johnston | W. C. Stoddart
William M. Crawford | Kelvin J. Kelkenberg | Richard A. Swedberg
M. Elizabeth Darrough | T. A. Kerr | D. C. Thomas
P. E. Eggers | C. Kilian | R. H. Towell
Phillip Eyre | Mike Krzaniak | G. A. Townes
F. Falci | W. H. Lake | P. Turula
Fred Ferate | R. Lesco | R. Vaughn
L. D. Fischer | R. E. Luna | J. M. Viebrock
C. Fisher | Ella McNeil | B. H. Wakeman
D. Fisher | Manfred Neven | S. F. Wawrzaszek
R. E. Glass | R. I. Newman | Alan Zimmer
Donna Goertzen | D. J. Nolan

Subcommittee N14.1 on Packaging of Uranium Hexafluoride, which developed this revision, had the following members:

R. I. Reynolds, Chair | R. Boyle
J. H. Alderson | B. Jody, Jr.
W. M. Arnold | G. McRae
R. E. Stein | R. Michelhaugh
R. Boeens | D. R. Polland
R. D. Clark | W. A. Pryor
R. H. Dyer | R. R. Rawl
T. Davis | T. Rummel
R. B. Pope | J. Stewart
N. A. Kent | J. B. Turner
N. L. Osgood | M. E. Wangler
R. H. Towell | D. J. Warriner
P. C. Rieke | W. M. Crawford
American National Standard
for Nuclear Materials –

Uranium Hexafluoride –
Packaging for Transport

1 Scope and Purpose

1.1 Scope

This standard provides criteria for packaging of uranium hexafluoride (UF₆) for transport. It includes specific information on design and fabrication requirements for the procurement of new UF₆ packagings. This standard also defines the requirements for in-service inspections, cleanliness, and maintenance for packagings in service. Packagings currently in service and not specifically defined in this standard are acceptable for use, provided they are used within their original design limitations and are inspected, tested, and maintained so as to comply with the intent of this standard. Also included are cylinder loadings, shipping details, and requirements for valves and valve protectors.

1.2 Purpose

This standard is intended to provide guidance and criteria for shipment of UF₆. It will assist in providing for compatibility of UF₆ packaging among different users within the nuclear industry.

2 Normative references

The following standards and references contain provisions, which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards and references are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards and references indicated below.

ANSI/ASME Boiler and Pressure Vessel Code 1998

ANSI/ASME B1.1-1989, Unified Inch Screw Threads (UN and UNR Thread Form)

ANSI/ASME B1.5-1997, Acme Screw Threads

ANSI/ASME B1.20.1-1983, Pipe Threads, General Purpose (Inch)

ANSI/ASME B16.11-1996, Forged Steel Fittings, Socket-Welding and Threaded

ANSI/ASME NQA-1-2000, Quality Assurance Program Requirements for Nuclear Facilities

ANSI/AWS A5.8-1992, Specification for Filler Metals for Brazing

ANSI/AWS A5.14-97, Specification for Nickel and Nickel Alloy Bare Welding Electrodes and Rods

* The 1989 edition of this standard is available in archive format. Although the standard was administratively withdrawn it has been submitted as a new standard and is currently undergoing the approval process.