Technical Report No. 47 Preparation of Virus Spikes Used for Virus Clearance Studies

2010

Preparation of Virus Spikes Used for Virus Clearance Studies Task Force

Authors

Damon Asher, PhD, Millipore Corp. Kurt Brorson, PhD, U.S. Food and Drug Administration JoAnn Hotta, Talecris Biotherapeutics Joseph Hughes, PhD, WuXi AppTec, Inc. Jerold Martin, Pall Life Sciences Horst Ruppach, NewLab BioQuality GmbH Gail Sofer, SofeWare Associates Martin Wisher, PhD, BioReliance, Inc. Hannelore Willkommen, PhD, RBS-Consulting Bin Yang, PhD, Genentech, Inc.

Contributors

Mark Bailey, Eli Lilly and Company	Mohammed Haque, Pall Life Sciences
Kate Bergman, Lancaster Labs.	Arifa Khan, PhD, U.S. Food and Drug Administration
Johannes Blümel, PhD, Paul-Ehrlich Institut	Richard Levy, PhD, PDA
Jeri Anne Boose, Compliance Insight, Inc.	Scott Lute, U.S. Food and Drug Administration
Mark Cabatingan, Hoffmann- La Roche Inc.	Carol Marcus-Sekura, BASI
Dayue Chen, PhD, Eli Lilly and Company	Michael Morgan, Asashi Kasei, Planova Division
Qi Chen, PhD, Genentech, Inc.	Masahiro Oda, Pall Life Sciences
Michael Colman, Millipore Corp.	Leonard Pease, PhD, University of Utah
Michelle Davis, Talecris Biotherapeutics	Kathy Remington, PhD, Catalent Pharma Solutions, Inc
Frank van Engelenburg, Kinesis Pharma	Barry Rosenblatt, Charles River Labs.
Charles Felice, Centocor Ortho Biotech (Johnson and	Michael Ruffing, PhD, Boehringer Ingelheim
Johnson)	Fokke Terpstra, Sanquin NL
Ren-yo Forng, PhD, MedImmune, Inc.	Ruth Wolff, Biologics Consulting Group
Albrecht Gröner, CSL Behring GmbH	

The content and views expressed in this Technical Report are the result of a consensus achieved by the Task Force and are not necessarily views of the organizations they represent or regulatory authorities in the E.U. or the U.S. Government.

Preparation of Virus Spikes Used for Virus Clearance Studies

Technical Report No. 47

ISBN: 978-0-939459-27-8 © 2010 Parenteral Drug Association, Inc. All rights reserved.

Table of Contents

5.0

1.0	INTRODUCTION4
2.0	GLOSSARY OF TERMS6
3.0	PREPARATION OF VIRUS STOCKS10
	3.1 Introduction 10
	3.2 Sourcing of Viruses and Preparation of Virus 10
	3.2.1 Viruses Used for Viral Clearance Studies 10
	3.3 Sourcing and Traceability of Viruses
	3.3.1 Traceability of Viruses 12
	3.4 Preparation of Virus Seed 13
	3.4.1 Approaches for Preparation
	3.4.2 Virus Seed Preparation
	3.5 Preparation of Master and Working
	Virus Banks
	3.5.1 Preparation of the Master Virus Bank (MVB)
	3.5.2 Preparation of the
	Working Virus Bank (WVB)
	3.6 Preparation of Virus Used for
	Virus Clearance Studies16
	3.6.1 Cytopathic Viruses16
	3.6.2 Non-cytopathic Viruses 17
	3.7 Storage of Virus Stocks 17
	3.8 Purification of Viruses
	3.8.1 Purification by Ultracentrifugation
	3.8.1.1 Pelleting
	3.8.1.2 Cushions
	3.8.1.3 Gradient Ultracentrifugation
	3.8.2 Purification by Membrane Adsorber 19 3.8.2.1 Purification of Parvoviruses on a Q
	3.8.2.1 Purilication of Parvoviruses on a u Membrane Adsorber
	3.9 Methods Used to Reduce Aggregates
	3.9.1 Filtration
	3.9.2 Filtration at the Spiking Step
	3.9.3 Sonication
4.0	METHODS FOR CHARACTERIZATION23
	4.1 Identity Testing
	4.1.1 Sequencing
	4.1.2 Immunological Assays
	4.2 Functional Properties
	4.2.1 Infectivity Assays
	4.2.1.1 Data Analyses and validation of Methods for Virus Enumeration
	4.2.2 Total Particle Count
	4.2.2.1 Electron Microscopic Determinations. 24
	4.2.2.2 Quantitative PCR

4.2.2.3 Spectrophotometric Measuremen	t25
4.2.2.4 Infectivity to Particle Ratio	
4.2.3 Aggregation	
4.2.3.1 Dynamic Light Scattering (DLS)	
4.2.3.2 Filter Sizing	
4.2.3.3 Newer Methods	
4.3 Purity	
4.3.1 Protein Content	
4.3.2 DNA/RNA Content	
4.4 Contamination	
4.4.1 Sterility/Bioburden	
4.4.2 Mycoplasma	
4.4.3 Adventitious Viruses	
4.4.3.1 <i>In vitro</i> assays	
4.4.3.2 Immunoassays	
4.4.0.2 minunou33uy3	
IMPACT OF VIRUS SPIKE ON THE SCALED	AND
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL	
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 30
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 30 31
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 31 31
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 31 31 32
IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION 5.1 Introduction 5.2 Influence of the Virus Spike on the Scaled Down Model 5.2.1 Chromatography 5.2.2 Filtration 5.2.2.1 Filtration Case Study #1 5.2.2.2 Filtration Case Study #2 5.2.2.3 Filtration Case Study #3	30 30 30 31 31 32 33
 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 31 31 32 33
 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL A INACTIVATION	30 30 30 31 31 31 32 33 34
 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL A INACTIVATION	30 30 30 31 31 32 33 34 35
 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL INACTIVATION	30 30 30 31 31 32 33 34 35 36
 IMPACT OF VIRUS SPIKE ON THE SCALED DOWN MODEL AND ON VIRUS REMOVAL A INACTIVATION	30 30 30 30 31 31 31 32 33 33 34 35 36 36

6.0 PHAGE PREPARATIONS

FOR SPIKING STUDIES4	6
6.1 Typical Use of Phages in Spiking Studies 4	6
6.2 Potential Phage Models	
6.2.1 PR772	6

(Extreme pH) 44

(Low pH)...... 44

5.4.1 Inactivation Case Study #1

5.4.2 Inactivation Case Study #2

5.4.3 Inactivation Case Study #3

8.0

6.2.2	Φ6	47
6.2.3	Φ X-174	47
6.2.4	PP7	47
6.2.5	MS2	48

7.1	Introdu	uction .	 	 . 5′	1
	.	~	 	 _	

7.	.3.2 Cultivation and Storage of Cells	53
	7.3.2.1 Medium Components	53
	7.3.2.2 Serum	54
	7.3.2.3 Trypsin	55
7.	.3.3 Cryopreservation and Storage	55
7.4	Cell Bank Testing	55
7.5	Cell Line Characterization	56
7.6	Raw Material Sourcing and Preparation	58
7.7	Documentation	59
REF	FERENCES	61

FIGURES AND TABLES INDEX

Table 3.2.1	Mammalian Viruses Used in Virus Validation Studies11
Figure 3.5	Master and Working Virus Bank Preparation Flowchart15
Table 3.7	Stability of SV40 and MMV Stored at -80°C18
Figure 3.8.2.1	Chromatograph of PPV Purified on a Q Membrane Adsorber
Table 3.8.2.1	Purification of PPV on a Q Membrane Adsorber
Table 3.9.2	Reduction of Virus Titer after Spiking and Pre-Filtration Through 0.2 and 0.1 μ m Rated Filters
Figure 4.1.2	Porcine parvovirus Infected Cultures of ST Cells; Uninfected Cells
Table 4.3.1	Protein Concentration of MMV Purified by Various Means
Table 5.2.1	Product Yield from Four Scaled-Down Unit Operations Using Different Spike Ratios
Figure 5.2.2.1	HAV Retention by a Small Size Virus Retentive Filter Using Different Spike Ratios
Figure 5.2.2.2	Capacity of a Virus Filter in Relation to the Purity of the Virus Spike 33
Figure 5.2.2.3	Flow Decay in a Small Virus Filter Caused by High Molecular Weight Mammalian DNA
Figure 5.2.2.4	Effect Of Spike Purity on Throughput of Various Small Virus Filters
Figure 5.3.1	Influence of Spike Purity on LRV by a Small Virus Retentive Filter 36
Figure 5.3.2.1	Small Virus Filter LRV Observed with Purified and Crude MMV Preparations
Figure 5.3.2.2-1	Filtration Volume Of Spiked IgG Using Different PPV Preparations 38

Figure 5.3.2.2-2	LRV Of PPV Using PPV Preparations of Different Purity
Figure 5.3.2.3	Reduced LRV Observed with Flow Decay in a Small Virus Retentive Filter Caused by High Molecular Weight DNA
Figure 5.3.2.4-1	Purification of X-MuLV and MMV by Sucrose Gradient Centrifugation 41
Figure 5.3.2.4-2	SV40 Stock Purification and Analysis41
Table 5.3.2.4	SV40 Clearance by a Large Retentive Virus Filter
Table 5.3.2.5	Effect of pH and Spike Quality on Observed LRV of PPV with a Large Virus Filter
Table 5.3.2.6	Removal of Virus Aggregates by Filtration
Figure 5.4.1	Inactivation of Different HAV Preparations by Pasteurization in Albumin
Figure 5.4.2	Inactivation of Different HAV Preparations by Extreme pH
Figure 5.4.5	Inactivation of Different BVDV Preparations by Low pH45
Table 6.2	Summary of the Properties of Selected Bacteriophages
Figure 6.3	Procedure for Growth and Purification of Bacteriophages 50
Figure 7.3.1	Morphology of Vero Cells in Different Growth Stages53
Figure 7.5-1	Examples Demonstrating the Susceptibility of Two Cell Lines to Various Viruses
Figure 7.5-2	Virus Growth Characteristic (HAV, Strain HM175, in FRHK-4 Cells) 58
Table 7.7	Documentation for Cell Banks and the Use of Cells60

1.0 Introduction

Assuring the viral safety of plasma derived biologicals and biopharmaceuticals is critical for safe use by healthcare consumers and successful marketing by industry of these vitally important healthcare products. Incidences of contamination of products derived from human plasma in the past have adversely impacted the health of hundreds of patients and tainted the image of certain segments of the healthcare industry. Today's recombinant biopharmaceuticals have never, as far as we know, presented a similar viral safety issue, and plasma derived products have a better safety record today. This is in large part due to stringent measures taken by the industry and regulators to mitigate viral safety risks.

The current strategy for ensuring viral safety involves multiple levels of control over the product and process, including cell bank screening, source material screening and/or inactivation, and incorporation of specific virus removal or inactivation steps into the production scheme. Validating the ability of the process to remove or inactivate viruses is key in understanding the ability of the manufacturing scheme to clear viruses, in the unlikely event that they do contaminate a process intermediate, and in providing a yard-stick to determine if the clearance capacity is large enough to assure viral safety.

Viral clearance studies start by designing scale-down models of the actual manufacturing unit operations. The objective of the scale-down model is to determine the performance and viral clearance that can be expected of a unit operation at full scale. First, key and critical process parameters, as defined in PDA Technical Report No. 42 (1) or ICH Q8(R2) (2) (e.g., resin contact time, filtration volume per membrane surface), are matched between the scale-down models and commercial large scale processing. Second, key and critical performance parameters, such as step yield and purity, must be representative of the large scale unit operation. Non-key/non-critical operating parameters, like column bed diameter and filter area, are lowered to allow reduction of the model unit operation to a scale practical for lab studies. Other key and critical parameters have to be considered if precipitation steps are investigated and virus is removed by distribution into the precipitate.

Viral clearance studies are conducted by spiking virus into the relevant intermediate and processing the spiked material in a scaled down unit operation. The reduction in the virus load by the unit operation demonstrates the effectiveness of the process step for virus removal or inactivation. The virus spike used in viral clearance studies should be representative of a potential contaminant to the extent achievable. Not only is the selection of appropriate relevant or model viruses important; the properties of the virus spike must also be considered. For example, the presence of serum in a virus spike may be problematic for a validation study of a serum-free manufacturing scheme. As another example, the presence of non-viral extraneous macromolecules, such as proteins and DNA, would be problematic for a validation of a downstream unit operation where the process fluid is presumably a highly purified, non-aggregated protein. It is important that contaminants in the virus spike itself do not impact key or critical performance parameters in a way that makes the scale-down model unrepresentative of the large scale process.

Achievement of these goals involves careful selection and design of virus spikes, both in terms of volume of spiking and purity of the preparations themselves. While it is relatively straightforward to modify the spiking volume to the point where it is non-interfering, achievement of spike purity is more complicated. Presently, some relatively crude spikes are produced directly from unprocessed clarified cell culture lysates or culture supernatants for direct use in validation studies. These spikes, like most biological systems, are relatively heterogeneous and difficult to control. Other virus preparations that are purified by ultracentrifugation/re-suspension, chromatography or other methods possess higher purity, but are still heterogeneous to some degree. The heterogeneities and