Technical Report No. 57

Analytical Method Validation and Transfer for Biotechnology Products

PDA Analytical Method Validation And Transfer For Biotechnology Products Task Force Members

Authors	Contributors
Stephan O. Krause, Ph.D., Chair, MedImmune	Patricia W. Cash, Ph.D., MedImmune
Florence Baudoux, Ph.D., GlaxoSmithKline	Larissa Chirkova, Novozymes
Pierre Douette, Ph.D., Eurogentec S.A.	Marta Germano, Pharming Technologies
Nicole Gibelin, Ph.D., Sanofi Pasteur, France	Siegfried Giess, Ph.D., Paul-Ehrlich Institute
Alice E. Grebanier, Ph.D., Centocor R&D	Rashmi Rawat, Ph.D., U.S. FDA
Rajesh Krishnamurthy, Ph.D., Zyngenia, Inc.	
Carl-Gustav, Millinger, Ph.D., Swedish Orphan Biovitrum	
Frank Moffatt, Ph.D., Solvias AG	
Dwayne Neal, SAIC-Frederick, Inc.	
Phillip Ramsey, SAIC-Frederick, Inc.	
Michael Rooney, Ph.D., BioTechLogic	
Melissa J. Smith, MJ Quality Solutions	
Michael Warncke, Ph.D., Bayer HealthCare	
Earl K. Zablackis, Ph.D., Sanofi Pasteur, USA	

The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Task Force and are not necessarily views of the organizations they represent.

This is a preview of "PDA TR 57-2012". Click here to purchase the full version from the ANSI store.

Analytical Method Validation and Transfer for Biotechnology Products

Technical Report No. 57

ISBN: 978-0-939459-41-4 © 2012 Parenteral Drug Association, Inc. All rights reserved.

Table of Contents

1.0 Introd	luction1
1.1 Sco	pe and Purpose 1
2.0 Gloss	ary of Terms 4
2.1 List	of Abbreviations
	ral Assessment of Method Validation ness
3.1 Gen	eral Risk Assessment Process
	ting AMV Protocol Acceptance Criteria 16
	Rationale
3.2.2	Consistent Risk Assessment to Set
оо г	Acceptance Criteria
	mple for AMV Protocol Acceptance Criteria 18
3.3.1	Setting and Justifying Acceptance Criteria for the AMV Protocol
	tical Method Validation20
	V Characteristics 22
4.1.1	,
4.1.2	
4.1.3	
4.1.4 4.1.5	Reproducibility (Precision)
	Linearity
4.1.7	•
4.1.8	
4.1.9	Quantitation Limit (QL)
4.1.10	Typical AMV Execution Matrix
	litional AMV Characteristics
to b	e Considered 27
4.2.1	Assay Bias and Analytical
	Response Factors
4.2.2	Stability of Samples, Standards, Controls,
100	Reagents, and Material
4.2.3	System Suitability30Sample Suitability30
	Statistical Data Reduction
	Robustness
4.2.7	
	Significant Digits in Reported Results
	Validating Other Analytical Technologies 33
	lytical Method Verification
	Verification Process
	Verification Requirements
	Retrospective Data 34
4.4 AM	V Documentation

4.4.1 AMV Protocol	34
4.4.2 AMV Report	
5.0 Analytical Method Transfer	36
5.1 Prerequisites to AMT	36
5.2 General AMT Strategy	37
5.3 Design of Comparative (AMT) Test Studies	38
5.3.1 Selecting AMT Performance	
Characteristics	38
5.3.2 Sample Selection and	
AMT Study Design	38
5.3.2.1 Specific AMT Study Design for	40
Highly Variable Methods	
5.4 Acceptance Criteria and Statistical Evaluation	
5.4.1 Acceptance Criteria for AMT Study 5.4.2 Statistical Tests for AMT Studies	
5.5 Sample Preparation	
5.6 Deviations and Failures	
5.6.1 Invalid Assays 5.6.2 Handling of Outlaying Results	43
and Retesting	43
5.6.3 AMT Study Extension	
5.7 AMT Documentation	
5.8 AMT Example	
5.9 AMT Continuum	
6.0 Analytical Method Comparability	49
6.1 Replacing Analytical Methods	49
6.2 Demonstrating AMC in	
Post-Validation Studies	50
6.2.1 Qualitative Tests	50
6.2.2 Quantitative Tests	51
6.3 Design of AMC Study	
6.3.1 Application and Acceptance Criteria	52
6.3.2 AMC Examples	
6.3.2.1 Demonstrating Noninferiority	
6.3.2.2 Demonstrating Superiority	
6.3.2.3 Demonstrating Equivalence	54
7.0 Analytical Method Maintenance	67
-	
7.1 Monitoring Analytical Method Performance	
7.2 Periodic Review	
7.3 Replacing Analytical Method Components	01
8.0 AMV Discrepancies/Failures	62
8.1 Investigation and Decision Process	
-	
9.0 References	65

FIGURES AND TABLES INDEX

Figure 1.1-1	Analytical Method Life Cycle Steps from Selection to Qualification or Validation 2
Figure 1.1-2	Example of a Method Lifecycle from the Identification of the Intended Use to Post-Validation Maintenance3
Figure 3.0-1	Example of Assessment of Method Validation Readiness Flow Path 10
Table 3.0-1	General Method Readiness Assessment Guide11
Table 3.1-1	The Five General AMV Classes and Prospective AMV Studies14
Table 3.1-2	Points to Consider in Overall Risk Assessment for Analytical Methods.15
Table 3.1-3	General Risks to Patient and/or Firm. 16
Figure 3.2.2-1	Risk-Based AMV Protocol Acceptance Criteria18
Table 3.3-1	Historical Data for Manufacturing Process, Assay Performance, and Suggested Limits for Accuracy and (Intermediate) Precision
Table 4.0-1	Minimum AMV Characteristics Per ICH Q2(R1)20
Table 4.0-2	ICH Q2(R1) Requirements and Suggested Reported Results and Acceptance Criteria21
Table 4.1.3-1	Intermediate Precision Matrix23
Table 4.1.3-2	Mixed Linear Model Results for Intermediate Precision Matrix24
Table 4.1.10-1	Typical AMV Execution Matrix for a Quantitative Limit Test
Table 4.2-1	ICH Q2(R1) Requirements and Suggested Reported Results and Acceptance Criteria28
Table 4.2.2-1	Prospective Expiry Date Study Protocol for a Critical In-House Reagent
Table 4.2.8-1	Confirming Significant Digits in Reported Test Results
Table 4.3-1	Verification Characteristics for Typical Compendial Method Types and Resulting Specifications
Table 4.4.1-1	Typical AMV Protocol Elements35
Table 4.4.2-1	Typical AMV Report Elements
Table 5.1-1	Suggested AMT Responsibility Matrix 37

Table 5.3.1-1	Examples of Method Types and AMT Performance Characteristics
Table 5.3.2-1	Examples of AMT Execution Matrices and Acceptance Criteria39
Table 5.3.2.1-1	Type I and Type II errors40
Table 5.3.2.1-2	General AMT Design Parameters and Considerations
Table 5.7-1	Typical AMT Protocol Sections 44
Table 5.8-1	AMT Study Design45
Table 5.8-2	AMT Transfer Results 46
Figure 5.8-1	Graphical Representation of Potency Results Per Potency Level Between Laboratories
Figure 5.8-2	Graphical Representation of the Combined Percent Recoveries Between Laboratories for All Three Concentration Levels
Table 6.1-1	Suggested Statistics to Assess AMC for Each Method Performance Characteristic
Table 6.3.2.1-1	Results for the Noninferiority Test: Candidate Method vs. EP/USP Sterility . 53
Figure 6.3.2.1-1	95% Confidence Interval for Noninferiority Test: Candidate Method vs. EP/USP Sterility53
Table 6.3.2.2-1	Results for the Superiority Test: New Method (7x per week) vs. EP/USP Sterility (2x per week)
Figure 6.3.2.2-1	95% Confidence Intervals for Superiority Test: Candidate Method vs. EP/USP Sterility54
Table 6.3.2.3-1	Equivalence Test Results Comparing SDS-PAGE (Reference) to CE55
Figure 6.3.2.3-1	90% Confidence Intervals for Equivalence: Candidate Method vs. EP/ USP Sterility55
Figure 7.1-1	Combining Laboratory (Assay Control) and Manufacturing Control Charts58
Table 7.2-1	Suggested Checklist Items to Assess Validation Status60
Figure 8.0-1	Failing Acceptance Criteria – The "Recovery Mission"62
Table 8.1-1	Checklist of Most Common Questions and Possible Information Sources 64

1.0 Introduction

This Technical Report (TR) provides risk-based guidance for Analytical Method Validation (AMV), which follows Analytical Method Development (AMD) or Analytical Method Qualification (AMQ), and contains risk-based guidance for other, related method lifecyle steps, such as Analytical Method Transfer (AMT).

The guidance provided here builds upon the International Conference on Harmonization (ICH) Q2 (R1) guidelines and includes additional considerations for analytical platform technology (APT) methods as well as the impact of stakeholder considerations, and essentially all modern quality expectations as recommended in the ICH Q8 (R2), Q9, and Q10 guidelines (1–4).

Similar to the manufacturing process, an analytical method can also be considered to be a process. The validation strategy for analytical methods could therefore conceptually follow those of Process Validation (5). AMV can then be defined as the collection and evaluation of data, from the analytical method development stage throughout routine QC testing, which establishes scientific evidence that an analytical method is capable of consistently delivering accurate and reliable results.

1.1 Scope and Purpose

This TR is to provide practical and strategic guidance to efficiently use historical data and knowledge to design suitable risk-based AMV studies, and set appropriate protocol acceptance criteria. The typical method lifecycle steps prior, during, and beyond the AMV studies are illustrated in **Figure 1.1-1**. The typical steps prior to validation, usually performed at early pharmaceutical development stages, are included in this figure to show the dependency among early- and late-stage lifecycle steps. The AMV process begins with the validation readiness assessment and continues with the post-validation steps, maintenance (validation continuum), transfer(s), comparability, as they may apply to the continuous demonstration of analytical method suitability. The typical sequence of all prevalidation, validation and post-validation steps, as illustrated in the bottom half of **Figure 1.1-1**, is reflected in the sequence of sections in this TR. Instead of dealing in great detail with many possible exceptions and special considerations, this TR is intended to provide practical guidance to typical development processes and AMV studies.

The guidance presented in this TR applies to all biotechnological manufacturers and all contract development and manufacturing organizations. This TR does not provide specific guidance for the timing of AMV study execution with respect to the parallel product development lifecycle stages or guidance for analytical instrument qualification.

It should be considered that various new analytical technologies and/or the use of Process Analytical Technology (PAT) methods may suggest some modification to the validation strategies presented here. Specific aspects for the validation of bioassays such as curve fitting models and statistical reference-to-sample parallelism requirements are not covered in this TR. Case-specific considerations for microbiological method validation such as statistical sampling and testing environment conditions are also not covered as they depend on the analytical methodology and the intended use.

AMV studies are typically executed for future routine-use methods but may not be required for analytical methods used in support of pharmaceutical development (5). Figure 1.1-2 illustrates the two different analytical method lifecycle paths separated according to the intended use of a particular method. The intended use of a particular method can be assessed early as part of the overall quality target product profile (QTPP) and a method should be selected accordingly. The intended use should be further considered when developing, qualifying and validating analytical methods. For example, measuring a critical quality attribute (CQA) or a critical process parameter (CPP) may require a more rigorous approach to the overall validation process. The intended use of a method can change during the method and/or product lifecycle(s) due to a specification change or other reasons.