This is a preview of "PDA TR 57-2-2015". Click here to purchase the full version from the ANSI store.

Technical Report No. 57-2

Analytical Method Development and Qualification for Biotechnology Products

PDA Analytical Method Development and Qualification of Biotechnology Products Technical Report Team

Authors				
Melissa J. Smith, MJ Quality Solutions, (Chair)	Dwayne Neal, Emergent BioSolutions			
Florence Baudoux, GlaxoSmithKline Biologicals	Phillip Ramsey, Emergent BioSolutions			
Marta Germano, Janssen Pharmaceutical Companies	Michael Rooney, Ph.D., Jazz Pharmaceuticals			
of Johnson & Johnson	Rebecca Sendak, Ph.D., Sanofi			
Joachim Leube, Ph.D., Crucell	Zoran Sosic, Biogen Idec			
Sheila Magil, Ph.D., BioProcess Technology Consultants, Inc.	Earl K. Zablackis, Ph.D., Sanofi Pasteur			
Carl Gustav-Millinger, Quality & Qualimetrics Consultancy QQC AB				
Contributors				

Raphael Bar, Ph.D., BR Consulting DaoTian Fu, Ph.D., Livzon Mabpharm, Inc. Kenji Furuya, Boehringer Ingelheim Stephan O. Krause, Ph.D., MedImmuneNadine M. Ritter, Global Biotech Experts, LLCJane Weitzel, Quality Analysis Consultants

DISCLAIMER: The content and views expressed in this technical report are the result of a consensus achieved by the authorizing task force and are not necessarily the views of the organizations they represent.

This is a preview of "PDA TR 57-2-2015". Click here to purchase the full version from the ANSI store.

Analytical Method Development and Qualification for Biotechnology Products

Technical Report No. 57-2

ISBN: 978-0-939459-74-2 © 2015 Parenteral Drug Association, Inc. All rights reserved.

This is a preview of "PDA TR 57-2-2015". Click here to purchase the full version from the ANSI store.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Method Lifecycle	2
	1.2	Purpose and Scope	2
2.0	GLOSS/	ARY OF TERMS	4
	2.1 Abb	previations	6
3 0	МЕТНО		7
5.0	2 1 1 4	had Definition	
	3.1 IVIEL	Analytical Target Profile	/ ۵
	3.1.1 3.2 Mei	thad Selection	9 11
	3.2.1	Bisk Assessment	12
	3.2.2	Selection of Platform-Based Technologies	12
	3.2.3	Conclusion of the Selection Process	13
	3.3 Me	thod Development and Optimization	13
	3.3.1	Phased Approach	13
	3.3.2	Risk Considerations	13
	3.3.3	Design of Experiment	14
	3.3.	3.1 List and Description of Experiments	15
	3.3.4	Execution of Development Activities	10
	ა.ა. ვვ	4.1 Samples and Standards	10
	3.3	4.3 Forced-Degradation Samples	18
	3.3.	4.4 Equipment	18
	3.3.	4.5 System Suitability	18
	3.3.	4.6 Robustness	19
	3.3.5	Evaluation of Development Activities	20
	3.4 Me	thod Deliverables	20
	3.4.1	Baseline and Best-Practice Deliverables	21
	3.4.2	Documentation Deliverables	23
	3.4.3	Physical Deliverables	Ζ4
4.0	METHO	D QUALIFICATION	26
	4 1 Ove	rview	26
	4.2 Met	thod Development Package Assessment	29
	4.2.1	Intended Use and Performance	29
	4.2.2	Standard Operating Procedure	29
	4.2.3	Physical Deliverables: Material and	
	_	Equipment	30
	4.2.4	Robustness	30

	42	5 Readiness to Proceed 30
	4.3 M	ethod Qualification Plan or Protocols 30
	4.3	1 Qualification Approach 30
	4.3	2 Qualification Characteristics 31
	4	3.2.1 Reference Standards 31
	4	3.2.2 Specificity 31
	4.	3.2.3 Spiked Samples
	4.	3.2.4 Linearity and Range
	4.	3.2.5 Accuracy
	4.	3.2.6 Repeatability and Intermediate
		Precision
	4.	3.2.7 Detection Limits and Quantitation
		Limits 34
	4.	3.2.8 Robustness
	4.	3.2.9 Stability-Indicating Assessment
	4.4 Ex	ecution
	4.5 Qi	ualification Evaluation
	4.5.	1 Specificity
	4.5.	2 Accuracy, Precision, Linearity, and Range 35
	4.5.	3 Detection Limits and Quantitation Limits . 36
	4.5.4	4 Statistical Assessments and Practical vs.
	4 5	Statistical Differences
	4.5.	UUAlification Excursions
	4.6 IVI	ethod Qualification Report
	4.6.	I Standard Uperating Procedure
	4.0.	2 Supportive Procedures
	4.0.	3 Data
	4.0.4	Validity Criteria 38
	17 0	valuary oncerta
	4.7 00	
5.0	ANAL	YTICAL METHOD COMPARABILITY AND
	ANAL	YTICAL METHOD TRANSFER45
6.0	METH	OD LIFECYCLE MANAGEMENT
	CONT	INUUM46

FIGURES AND TABLES INDEX

Figure 1.1-1	Method Lifecycle and its Links to Product Development2
Figure 1.2-1	Table of Contents Map3
Figure 3.0-1	Method Development Process7
Table 3.1-1	Overview of Method Definition Process8
Table 3.1-2	Points to Consider for Method Definition $\dots 9$
Table 3.2-1	Inputs and Outputs of Method Selection Process11
Figure 3.3.2-1	Risk Assessment Process Map 14
Figure 3.3.3.1-1	Iterative Method Development Process
Table 3.3.4.6-1	Fractional Factorial Design: Factors, Levels with Result from Each Run, and Factor Effect p-values
Figure 3.3.4.6-1	Normal Plot Robustness Factor Assessment20

Table 3.4.1-1	Baseline and Best Practices for Deliverables of a Developed Method	. 22
Figure 3.4.2.1-1	Documentation Deliverables	. 24
Figure 3.4.3-1	Physical Materials Deliverables	. 25
Figure 4.1-1	Models of Qualification	. 27
Table 4.3.2.6-1	Sample IP Matrix	. 33
Figure 4.3.2.6-1	Sample Nested Design for IP for Day 1	. 33
Table 4.3.2.6-2	Sample Restricted Maximum Likelihood Variance Component Estimates for IP Matrix	. 34
Table 4.7-1	Evaluations and Deliverables for AMD and AMQ	. 39
Figure 6.0-1	Development and Qualification Lifecycle Deliverables	. 46

1.0 Introduction

This technical report provides practical, risk-based guidance for the development and qualification portions of the analytical method lifecycle for biotechnology products. It is a companion report to PDA *Technical Report No. 57: Analytical Method Validation and Transfer for Biotechnology Products.*

Method development begins with defining the requirements for the analytical method. Based on the intended use and related requirements of the method, an analytical platform is selected in concert with the appropriate materials and equipment. A method is defined through method optimization, with consideration of the final requirements of the method (e.g., sensitivity and specificity). The development of a method typically leads to, but does not necessarily finish with, its qualification, which is a documented assessment of method performance (1). This process is one means to help ensure that the method is scientifically sound (specific, sensitive, accurate, and reproducible) and is suitable and reliable for the specified purpose (2-4). Method performance may also be assessed by other means, including trending of assay controls during routine method use.

The development process depends on the use of appropriately detailed documents that describe the analytical method. Operational and maintenance procedures for equipment should be available to ensure proper functioning with respect to the intended use and phase of product development (4-7).

Analytical method development (AMD) and analytical method qualification (AMQ) are typically iterative processes whereby the method is optimized, tested for its suitability (i.e., ability to meet target criteria for performance characteristics, such as precision and accuracy) through qualification studies, and potentially further optimized based on the qualification results.

The analytical target profile (ATP) is discussed in further detail in the body of this technical report as a potential means to manage AMD and AMQ. The ATP is comprised of the concepts of intended use, expected performance; measured critical quality attributes (CQAs), identified critical performance parameters, and completed iterative performance assessments. It can, therefore, be considered the structural framework for the method development and qualification process as well as for the rest of the method lifecycle continuum, including validation and routine use (8).

Qualification of an analytical method typically proceeds in a phase-appropriate manner commensurate with the intended use of the method. In other words, a more extensive evaluation of method performance or qualification may be performed to support a Phase II clinical study than was used for a Phase I study, with both qualification activities being broadly based on the elements of ICH Q2(R1) guidance (6). The phase-appropriate guidance documents describe the qualification and validation activities recommended for release and stability methods in support of a particular clinical phase (2,3). For other methods, such as characterization methods, qualification can be the end goal in the method lifecycle. Formal method qualification is not a regulatory requirement prior to method validation, but it offers one means of ensuring method suitability and ability to satisfy the defined requirements (e.g., in the ATP) and to support a successful validation.

The intended use of analytical methods may change during the product development process and may affect the ATP, method requirements, and method performance expectations. AMQ provides an option to ensure the suitability of a method's use for the release of early-phase or midphase clinical trial material without generating formal and prospective analytical method validation (AMV) studies.

1.1 Method Lifecycle

The method lifecycle is the time from identification of the need for an analytical method through method retirement, including periodic reassessments of and updates to the method. This lifecycle is tied to the product lifecycle in that the status of the method must be assessed in the context of whether the product is in the early stages of clinical development or is commercially approved. An important part of the method lifecycle is to ensure that at each stage, the method is assessed and found ready to proceed to the next step. A schematic of the development and qualification elements of the lifecycle, which are detailed within this report, is provided in **Figure 1.1-1**, which also shows the link to validation, as detailed within PDA *Technical Report No. 57*.

Figure 1.1-1 Method Lifecycle and its Links to Product Development

1.2 Purpose and Scope

This technical report covers method development and qualification for biotechnology products.

The content that follows describes the method development and qualification portions of the lifecycle that often lead to method validation, which is outlined in PDA *Technical Report No. 57: Analytical Method Validation and Transfer for Biotechnology Products* and ICH Q2(R1) (6,9). This report also delineates the commonalities and differences between qualification and validation, the various models for execution of qualification, and which of these models comprise the best practices of industry. The document further recognizes that terms such as "qualification" may be commensurate with phase-appropriate validation within certain company systems and regulatory environments (1). This report includes guidance for AMD and AMQ studies, such as risk-based strategies and priorities; ATP and quality-by-design (QbD) concepts; target performance criteria; and modern quality expectations, such as those presented in ICH Q8-10 guidelines (10-12).