Technical Report No. 64

Active Temperature-Controlled Systems: Qualification Guidance
PDA Active Temperature-Controlled Systems: Qualification Guidance Technical Report Team

<table>
<thead>
<tr>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl Kussow, FedEx Custom Critical, Team leader</td>
</tr>
<tr>
<td>Anthony Bantug, Baxter BioScience</td>
</tr>
<tr>
<td>John Bratz, Sensitech</td>
</tr>
<tr>
<td>Boriana Cavicchia, PricewaterhouseCoopers, LLC</td>
</tr>
<tr>
<td>Alan Davis, Johnson & Johnson</td>
</tr>
<tr>
<td>John Dobbins, Pfizer</td>
</tr>
<tr>
<td>Chris Fore, Envirotainer</td>
</tr>
<tr>
<td>Geoffrey Glauser, Conceptual Mindworks Inc.</td>
</tr>
<tr>
<td>Joel Glende, Abbott Laboratories</td>
</tr>
<tr>
<td>Jason Heberle, TCP Reliable</td>
</tr>
<tr>
<td>William Helsby, Novartis (Liverpool)</td>
</tr>
<tr>
<td>Suzan Lanz, Savient Pharmaceuticals, Inc.</td>
</tr>
<tr>
<td>Gerry Marasigan, SNC-Laval Pharma</td>
</tr>
<tr>
<td>Peter Mirabella, QProducts & Services</td>
</tr>
<tr>
<td>Lisa Moher, Sanofi</td>
</tr>
<tr>
<td>Eric Newman, Falvey Cargo Underwriting</td>
</tr>
<tr>
<td>Richard Peck, Sensitec</td>
</tr>
<tr>
<td>Mark Pietropola, Great American Lines, Inc.</td>
</tr>
<tr>
<td>Chris Renz, Genentech</td>
</tr>
<tr>
<td>Edward J. Smith, Ph.D., Packaging Science Resources, LLC</td>
</tr>
<tr>
<td>Dave Ulrich, Abbvie</td>
</tr>
<tr>
<td>Erik J. van Asselt, Ph.D., Merck, Sharp & Dohme B.V. (MSD)</td>
</tr>
</tbody>
</table>

PDA would like to acknowledge the contributions of Phil DeSantis (DeSantis Consulting Associates) and Mike Long, Ph.D. (ConcordiaValsource), who served as PDA Advisory Board subject-matter experts to this technical report team.

DISCLAIMER: The content and views expressed in this Technical Report are the result of a consensus achieved by the authorizing Technical Report Team and are not necessarily views of the organizations they represent.
Active Temperature-Controlled Systems:
Qualification Guidance

Technical Report No. 64

© 2013 Parenteral Drug Association, Inc.
All rights reserved.

PDA®
Parenteral Drug Association
Table of Contents

1.0 INTRODUCTION ..1
1.1 Purpose and Scope...1
1.2 Aircraft Cargo Compartments1

2.0 GLOSSARY OF TERMS2
2.1 Acronyms ..4

3.0 OVERVIEW OF ACTIVE SYSTEM OPERATING
CHARACTERISTICS ...5
3.1 Temperature Control Unit System Components ...5
3.1.1 Cooling and Heating Cycle:
How it all works...5
3.2 Operating Characteristics
Affecting Qualification ...6
3.2.1 Insulation..6
3.2.2 Airflow..6
3.2.3 Thermal Integrity ...7
3.2.4 Capacity for Heat Exchange
3.2.5 Temperature Monitoring Systems7
3.2.6 Alarms ..8
3.3 Temperature Control Accuracy8
3.4 Risk and Criticality Assessment of Systems ...8
3.4.1 Risk Assessment ...9

4.0 QUALIFICATION OF ACTIVE TEMPERATURE-
CONTROLLED TRANSPORTATION SYSTEMS ...12
4.1 Approach: Protocol Development12
4.2 Design Qualification13
4.3 Installation Qualification13
4.3.1 Document Verification
4.3.2 Equipment Installation Verification14
4.3.3 Preventative Maintenance
4.3.4 Calibration Verification
4.4 Operational Qualification15
4.4.1 Power Failure Recovery Testing16
4.4.2 Alarm Testing16
4.4.3 SOP Verification16
4.4.4 Temperature Controls Verification16
4.4.5 Configurable Parameter Verification17
4.4.6 Repeatability and Consistency
Considerations...17
4.4.7 Acceptance Criteria17
4.4.8 Reporting Criteria18
4.5 Performance Qualification18
4.5.1 Product Tests18
4.5.2 Loaded Unit Temperature Uniformity18
4.5.3 Open Door Recovery18
4.5.4 Additional Considerations19

4.6 Temperature-Controlled OCEAN
CONTAINERS ..31
4.6.1 Temperature Monitoring19
4.6.1.1 Bracketing Load Development20
4.6.1.2 Mapping Product Temperatures vs. Air
Temperatures...20
4.6.1.3 Locating Warm and Cold Spots20
4.6.1.4 Duration of Mapping Studies21
4.6.2 Periodic Review of Qualifications21
4.6.3 Leased Assets21
4.6.4 A Family Approach22
4.6.4.1 Defining an Active System Family22
4.6.4.2 Process Controls
4.6.4.3 Qualification of Active
Temperature-Controlled
Transportation System Families ...23
4.6.4.4 of the Four Active Transportation Systems ..25

5.0 TEMPERATURE-CONTROLLED
TRUCKS AND TRAILERS ...27
5.1 System Description27
5.2 Qualification...28
5.2.1 Approach ...28
5.2.2 Design Qualification/Vendor Selection .28
5.3 Installation Qualification28
5.3.1 Procedure Verification
5.3.1.1 Trucks Used for Courier Routes29
5.4 Operational Qualification29
5.4.1 Power Loss/Recovery and Redundant
System Testing...29
5.5 Performance Qualification29
5.5.1 Static vs. In-Transit Studies During
Performance Qualification29

6.0 TEMPERATURE-CONTROLLED OCEAN
CONTAINERS ..31
6.1 How Intermodal Temperature-Controlled
Containers Work...31
6.1.1 Process Review and Qualification32
6.2 Qualification of Technology33
6.3 Processes Affecting Container Performance .33
6.3.1 Pretrip Inspection34
6.3.2 Loading and Transport to Sea Port34
6.3.3 Unloading at the Sea Port, Staging and
Customs Clearance.....................................35
6.3.4 In-Transit ...35
6.3.5 Port of Arrival – Unloading, Customs
Clearance, and Delivery
6.4 A Note on Insurance Liability and Security ...36
1.1 Purpose and Scope

Fundamental to any temperature-controlled process is the expectation that materials that are stored and shipped within a controlled environment are maintained within a defined temperature range. Typically, this temperature range is within the recommended product storage requirements derived from stability data. The temperature within a temperature-controlled vehicle; temperature-controlled ocean container; active unit load device (ULD); or walk-in, temperature-controlled stores (e.g., a cold room, refrigerator, freezer, or standalone unit) is expected to be maintained:

- Reliably and consistently through the period in which the product is stored within the controlled environment (i.e., over time)
- In compliance with the product requirements for temperature at all locations in which the product might be stored (i.e., temperature and location or storage boundary)

The qualification process proves that the transportation system can consistently meet product temperature requirements. Strategies for conducting qualification studies should be based on the product’s temperature and stability requirements as well as the transportation and storage process for that product.

Qualification is part of a validation program with a validation master plan (VMP) for the transportation system in question that defines the design qualification (DQ), installation qualification (IQ), operational qualification (OQ) and performance qualification (PQ) requirements. The VMP is discussed in more detail in Section 4.0.

This guidance discusses the process of qualifying actively controlled spaces that are designed to maintain a stable and uniform temperature around the cargo for the duration of transportation or storage at any temperature range. Specifically, this guidance addresses best practices for qualifying temperature-controlled trucks or trailers (hereafter referred to simply as “trucks”), temperature-controlled ocean containers, active ULDs, and walk-in temperature-controlled stores that are used to quarantine, hold, or store raw materials, intermediates, or products. It provides details on selected temperature-controlled units and their qualification testing, and it identifies best practices for performing and documenting the qualification activities, including temperature mapping studies, that are part of an overall validation program, whether that program is conducted by the pharmaceutical shipper or a service provider.

1.2 Aircraft Cargo Compartments

The environment of packages or freight in aircraft cargo compartments can be influenced by the transportation process. Transportation processes can be combined with other temperature-controlled packaging processes (active or passive) to help reduce the extremes of temperature for commodities during transit. In marketing their aircraft equipment and procedural controls, some air carriers are claiming that the aircraft cargo hold can serve as an active temperature-controlled system for cargo that is less sensitive to temperature variations (e.g., for products that are stable in a controlled room temperature range of 15°C to 25°C with allowable excursions). Although the temperature inside many current aircraft compartments can be regulated, aircraft themselves are not designed as temperature control systems. Thus, they are not discussed as such in this guidance.

Pharmaceutical shippers with cargo that is sufficiently stable to withstand the rigors of air travel without additional protection by an active container or passive packaging system should perform shipping temperature studies to ensure that process controls are sufficient to protect the product within the air planes used. Such studies are outside the scope of this guidance.