This is a preview of "PDA TR 69-2015". Click here to purchase the full version from the ANSI store.

Technical Report No. 69

Bioburden and Biofilm Management in Pharmaceutical Manufacturing Operations

PDA Bioburden and Biofilm Management in Pharmaceutical Manufacturing Operations Technical Report Team

Authors and Contributors		
Vince Anicetti, Coherus Biosciences (Team Co-leader)	Patricia Hughes, Ph.D., U.S. FDA	
Marc Mittelman, Ph.D., Exponent (Team Co-leader)	Anastasia Lolas, Visionary Pharma Consulting LLC	
Catherine Adley, Ph.D., University of Limerick	Randa Melhem, Ph.D., U.S. FDA	
Peter Amin, Ph.D., U.S. FDA	Peter Noverini, Azbil North America — BioVigilant	
John Arigo, Ph.D., U.S. FDA	Divison	
Hal Baseman, Valsource, LLC	Mark Pasmore, Ph.D., Baxter	
John Paul Bevel, Teva Pharmaceutical	T.C. Soli, Ph.D., Soli Pharma Solutions, Inc.	
Lucia Clontz, Ph.D., Xellia Pharmaceuticals	Paul Sturman, Ph.D., Center for Biofilm Engineering	
Sven Deutschmann, Ph.D., Roche Diagnostics GmbH	Kalavati Suvarna, Ph.D., U.S. FDA	
Rebecca A. Devine, Ph.D., Consultant to the	Tyler Tsang, Genentech	
Biopharmaceutical Industry	George Verghese, STERIS Corporation	
Mark Fornalik, Industrial Biofouling	Carmen M. Wagner, Ph.D., Strategic Compliance International, Inc.	

DISCLAIMER: The content and views expressed in this technical report are the result of a consensus achieved by the authoring task force and are not necessarily views of the organizations they represent.

This is a preview of "PDA TR 69-2015". Click here to purchase the full version from the ANSI store.

Bioburden and Biofilm Management in Pharmaceutical Manufacturing Operations

Technical Report No. 69

ISBN: 978-0-93-945976-6 © 2015 Parenteral Drug Association, Inc. All rights reserved.

Table of Contents

1.0 INTRODUCTION	1
1.1 Scope and Purpose	1
	3
2.0 GLOSSANT OF TERMS	J
3.0 OVERVIEW OF BIOBURDEN AND BIOFIL	MS 6
3.1 Bioburden Generation	6
3.2 Chemistry of Biofilm Formation	7
3.3 Growth and Survival	8
3.4 Microbial By-Products	8
3.4.1 Endotoxins and Other Cell-Wall	
Components	8
3.4.2 Exotoxins and Other By-Products	8
3.5 Impact of Fluid Flow on Biofilms	9
3.6 Biofilm-Remediation Considerations	11
4.0 DESIGN, CONTROL, AND PREVENTION	
CONSIDERATIONS	13
4.1 Overview of Microbial-Control Strategy	<i>.</i> 13
4.1.1 Quality System	14
4.1.2 Risk Assessment	14
4.1.2.1 Ingress of Microorganisms	14
4.1.2.2 Proliferation of Microorganisms	14
4.1.2.3 Persistence of Microorganisms	15
4.2 Design Considerations	15
4.2.1 Facility Design	15
4.2.1.1 Construction Materials	15
4.2.1.2 Cleaning Program	15
4.2.1.3 Environmental Controls	16
4.2.1.4 Workflow	
4.2.1.5 Waste	
4.2.2 Equipment Design	
4.2.2.1 Soft Part Management	
4.2.2.2 Leak Control	18
4.2.2.3 Automation	10 10
4.2.2.4 Gleaning	10
4.2.2.5 Equipment noid Time and Store	ige 18
4.2.5 Water Systems and das	10
4 2 3 1 Water Quality	19
4 2 3 2 Water System Sanitization	19
4 2 3 3 Hose and Valve Maintenance	20
4.2.3.4 Process Gases	20
4.2.4 Manufacturing-Process Design	20
4.2.4.1 Single-Use Technoloav	
4.2.4.2 In-Process Limits	
4.2.4.3 In-Process Hold Times	
4.2.5 Personnel	22

	 4.2.6 Materials	22 23 23 23 23 23
	4.3.1 Types of hesiddes 4.3.2 Cleaning Processes	24
	4 3 2 1 Water Flush or Rinse	24
	4.3.2.2 Sanitization	24
		21
5.0	BIOBURDEN AND BIOFILM DETECTION AND	
	CHARACTERIZATION	26
	5.1 Sampling Points and Frequency	26
	5.1.1 Upstream Production	26
	5.1.2 Downstream Processing	27
	5.1.3 Monitoring Strategy	27
	5.1.4 Process Sampling	27
	5.1.5 Equipment Sampling	28
	5.2 Sampling Strategy	28
	5.3 Microbial Levels and Limits	28
	5.3.1 Environmental Contamination	
	Recovery Rates	29
	5.4 Recovery and Analysis of Biofilms	30
	5.4.1 Biofilm Sampling	30
	5.4.2 BIOTIIM Analyses	31 22
	5.5 IVIICIODIAL DY-FIOUUCL DELECTION	აა 22
	5.5.1 Endoloxins	27 27
	5.6 Alternative Microbial Detection Methods	34 34
	5.6.1 Banid Microbial Methods (BMMs)	34
	5.7 Microbial Test Method Validation	36
	5.7.1 Method Suitability	36
	5.7.2 Alternative Method Validation	37
	5.7.2.1 Microscopy	37
	5.7.2.2 Spectroscopy	37
	5.7.2.3 Chromatography	37
	5.8 Approaches to Laboratory Investigations	37
	5.8.1 Launching Investigations	37
	5.8.2 Investigation Outcomes	38
6.0	INVESTIGATION AND REMEDIATION	39
	6.1 Organizing the Investigation Effort	39
	6.1.1 Formation of Investigation and	00
	Kemediation leams	39
	b.2 Investigation	40
	6.2.1 1 Potooting Personnling and Collection	40
	of Additional Samples	ΔN
	6.2.1.2 Beview of the Sampling Procedure	40
	elettie tietter of the earthphing freeduitettin	

6.2.1.3 Review of Laboratory Environmental	
and Test Controls	41
6.2.1.4 Microbial identification	41
6.2.2 Root Cause Determination of	
Contamination	41
6.2.2.1 Kisk Assessment	41
6.2.2.2 Investigation of the Contamination	12
6 2 2 2 Investigation Considerations	4Z //2
6.2.2.3 Investigation considerations	4J 43
6 2 2 3 2 Association with Recent	70
Changes to the System or	
Past Problems	43
6.2.2.3.3 Supplemental Nonroutine	
Sampling	43
6.3 Remediation	43
6.3.1 Issues to Consider in Biofilm Removal	43
6.3.2 Cleaning and Sanitization Methods and	
Farameters	44
6.2.2.2 Achieving Microbial Kill after Cleaning	44 11
6.3.2.2 Achieving Microbial Kill after Greaning	44
Disinfectants	45
6.3.3 Equipment Replacement or Design	
Improvement	45
6.3.4 Preventive Actions	45
6.3.4.1 Ineffective Routine Sanitization	
Parameters	45
6.3.4.2 Untreated Surfaces	45
6.3.4.3 Revision of Cleaning and Sanitization	40
Indicators or Frequency	46
6.3.4.4 Correction of Poor Equipment	16
6.4 Monitoring CAPA Effectiveness	40
6.5 Communication of Investigation Results	40
and Actions	46
6.5.1 Reviews of Risk-Assessment Reports	46
6.5.2 Regulatory Submission Notification	
or Modifications	46
6.5.3 Notification of Customers and Suppliers	
about Changes	46
7.0. CONTAMINATION SCENARIOS	48
7.1. Sconario 1: Riofilm in Piologico Durification	
Fourinment	48
7.1.1 System and Process Description	48
7.1.2 The Event	48

7.1.3	The Investigation	48
7.1.4	Root and Probable Causes	49
7.1.5	CAPAs	49
7.1.6	Verification of Effectiveness	49
7.1.7	Lessons Learned	49
7.2 Sce	nario 2: Biofilm in WFI System	
7.2.1	System and Process Description	49
7.2.2	The Event	50
7.2.3	The Investigation	
7.2.4	Root and Probable Causes	
7.2.1	CAPAs	50
7.2.6	Verification of Effectiveness	50
7.2.0	Lessons Learned	50
73 500	pario 3: Insufficient Hot Water Sanitizatio	00 m
7.0 OCC	Cold WFLLoon	50
731	System and Process Description	50
7.3.1	The Event	50 51
7.3.2	The Investigation	51
7.3.3		JT
7.3.4	Varification of Effectiveness	JZ
7.3.3	Lossons Losrnod	JZ
7.5.0	Lessons Learney	52
7.4 306	n Duo to Opon Point of Uso Dood Log	52
7 / 1	System and Process Description	JZ
7.4.1	The Event	JZ
7.4.2	The Investigation	JZ
7.4.3		33 53
7.4.4	Variation of Effectiveness	33
7.4.5	venification of Effectiveness	53
7.4.6	Lessons Learned	53
1.5 500	nario 5: Nonsterlie Batch Contamination	Ε4
	an External Biolilim	54
7.5.1	System and Process Description	54
7.5.2	The Event	54
7.5.3	Ine investigation	54
7.5.4	CAPAs	55
7.5.5	Verification of Effectiveness	55
7.5.6	Lessons Learned	55
8.0 APPEN AND TY	DIX I: BIOPROCESS UNIT OPERATIONS PICAL PROCESS CONTROLS AND	3
DETEC1	[ION	56
9.0 APPEN	DIX II: TYPICAL BACTERIAL RESPONS	E
LIMI12		วŏ
	ENCES	E0
IU.U NEFER	LINULJ	

FIGURES AND TABLES INDEX

Figure 3.1-1	Bacterial biofilm on 316 stainless steel 6
Figure 3.1-2	Biofilm Formation and Generation7
Figure 3.5-1	Fluid-Flow Velocity Profiles for Laminar (a) and Turbulent (b) Flow Conditions within a Pipe10
Figure 3.5-2	Laminar Boundary Sublayer Thickness in a Two-Inch Pipe
Fig 4.0-1	Effective (Risk-Based, Science-Based, and Proactive) Microbial-Control Program
Figure 5.1-1	Microbial Contamination Control in Bioprocessing
Table 5.4.1-1	Biofilm Recovery/Analysis Methods31

Table 5.4.2-1	Biofilm Analysis Methods 32
Table 5.4.2-2	Biofilm Analysis Techniques Using Removable Coupons
Table 5.5-1	Possible Effects of Biofilm on Product
Table 5.5-2	Possible Effects of Biofilm on Process Performance
Table 5.6.1-1	Current RMM Technologies35
Figure 6.0-1	Flow Diagram of Investigation and CAPA Steps for Effective Remediation
Figure 6.2.2.1-1	Fault-Tree Analysis to Determine the Root Cause of a Contamination

1.0 Introduction

In the pharmaceutical industry, microbial-control issues are frequently cited in U.S. FDA inspectional observations and have resulted in recalls and/or medical shortages (1). In a review of more than 600 microbiology-related U.S. recalls of sterile and nonsterile products from 2004 to 2011, the majority resulted from a "lack of sterility assurance," indicating a potential problem with the product or packaging or that the manufacturer was unable to document that the product was manufactured in a state of control (2). Within the manufacturing environment, poor procedures, practices, and controls during the manufacture of sterile drug products and poorly designed environmental monitoring programs are frequent inspectional observations. Persistent bioburden and biofilm contamination have been implicated in at least one major recall that resulted in a medical shortage of parenteral products (1).

Management of bioburden, primarily biofilms, in pharmaceutical production processes is a major focus of quality programs. Yet, despite the significant resources used in bioburden contamination control efforts, bioburden contamination of manufacturing processes can be a significant cause of compromised product quality and adverse regulatory findings. Reasons for the persistent challenge of bioburden control include production processes that support microbial growth, use of nonsterile source materials, and human interfaces. This challenge is further complicated by the ability of microorganisms to survive and often flourish even in harsh environments (e.g., exposure to chemical sanitizers and disinfectants, high shear, and pressure). The formation of complex, adherent bacterial colonies ("biofilms") in fluid handling systems is a common adaptive strategy for many microorganisms and presents a significant challenge for their detection and control. Microorganisms growing within biofilms, along with planktonic cells that are present in a bulk phase environment, comprise bioburden in fluid handling systems.

In the latter part of the 20th century, there was a fundamental shift in the understanding of microbial growth in various environments. The commonly held historical perception of bioburden was that it consisted of individual planktonic (free-floating) organisms. The planktonic model has been the basis for most current bioburden management strategies; nearly all of the commercially available bioburden detection systems are based on planktonic cell detection. However, evidence accumulated over the past three decades suggests that biofilms are actually the preferred mode of microbial growth (*3-5*), with sessile cells sometimes outnumbering planktonic organisms by several orders of magnitude in a given environment. Since the planktonic model does not provide for adequate detection and control of biofilms, there is a need for an increased focus on the development of effective strategies and techniques for the detection and control of biofilms in overall bioburden prevention and control activities.

Microbial and, in particular, biofilm control remains a major challenge for the medical device and pharmaceutical industries. Similarly, in hospitals and other healthcare institutions, a knowledge gap exists in the detection and control of biofilm-related infections *(6)*.

1.1 Scope and Purpose

A comprehensive program of bioburden management includes strategies for preventing and controlling biofilms and is based on current scientific knowledge of microbial growth and adaptation. This technical report presents the current scientific understanding of the causes of, and control strategies for, bioburden in pharmaceutical production systems, with a special emphasis on biofilms in fluid-handling systems. The scope of the report encompasses pharmaceutical and biopharmaceutical manufacturing processes but does not include final aseptic and terminal sterilization fill-finish operations. It is important to educate engineers, scientists and managers about the science of bioburden and biofilms because of the broad and complex challenge of bioburden management.