ANSI/RIA R15.06-1999(R2009)

for Industrial Robots and Robot Systems — Safety Requirements

ROBOTIC INDUSTRIES ASSOCIATION
900 Victors Way, Suite 140
Ann Arbor, MI 48108
American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.
4.5.1 Simple... 8
4.5.2 Single channel .. 8
4.5.3 Single channel with monitoring... 8
4.5.4 Control reliable ... 8
4.6 Robot stopping circuits .. 9
4.6.1 Emergency stop .. 9
4.6.2 Emergency stop devices .. 9
4.6.3 Emergency stop device design... 9
4.6.4 Stopping with power off .. 9
4.6.5 Safety stop .. 9
4.7 Pendant and other teaching controls... 10
4.7.1 Automatic .. 10
4.7.2 Motion control ... 10
4.7.3 Enabling device .. 10
4.7.4 Pendant emergency stop.. 10
4.7.5 Single point of control ... 10
4.8 High speed APV requirements .. 10
4.9 Slow speed control .. 11
4.10 Singularity protection ... 11
4.11 Axis limiting devices .. 11
4.12 Provisions for lifting ... 11
4.13 Electrical connectors ... 11
4.14 Hoses... 12
4.15 Failures .. 12
4.16 Required information ... 12
5 Performance requirements of safeguarding devices .. 13
5.1 Barrier guards, fixed and interlocked... 13
5.2 Interlocking safeguarding devices ... 13
5.2.1 Mechanical devices .. 13
5.2.2 Electrical devices.. 14
5.3 Requirements for other safeguarding devices that signal a stop. 14
5.3.1 Safety light curtains/screens .. 14
5.3.2 Area scanning safeguarding devices ... 15
5.3.3 Radio frequency (RF)/capacitance safeguarding devices 15
5.3.4 Safety mat systems .. 16
5.3.5 Single and multiple beam safety systems.. 16
5.3.6 Two hand control systems .. 16

6 Installation of robots and robot systems ... 17
 6.1 Installation specification .. 17
 6.2 Environmental conditions ... 17
 6.3 Control location ... 17
 6.3.1 Actuating controls ... 17
 6.4 Safety related software and firmware based controllers 17
 6.5 Limiting devices ... 18
 6.6 Restricted space identification ... 18
 6.7 Dynamic restricted space .. 18
 6.8 Robot system clearance .. 18
 6.9 Power requirements .. 18
 6.10 Grounding requirement ... 18
 6.11 Power disconnect ... 18
 6.12 Robot system stopping circuits .. 18
 6.12.1 Robot system emergency stop ... 19
 6.12.2 Robot system emergency stop device location 19
 6.12.3 Robot system emergency stop device design 19
 6.12.4 Robot workcell emergency stop function 19
 6.12.5 Safety stops ... 19
 6.13 Associated equipment shutdown ... 20
 6.14 End-effector power loss or change ... 20
 6.15 Emergency recovery procedure .. 20
 6.16 Precautionary labels .. 20
 6.17 Required information .. 20

7 Safeguarding of personnel - Introduction .. 20
 7.1 Responsibility .. 20
 7.2 Implementation .. 20
 7.3 Robot or robot system implementation stages 20
 7.4 Sources of hazards ... 21
 7.5 Safeguarding methodology selection ... 21

8 Safeguarding of personnel - Prescribed method 22
 8.1 Safeguarding requirements .. 22
 8.2 Restricted space ... 22
 8.3 Protection of personnel outside the safeguarded space 22
8.4 Protection of personnel within the safeguarded space .. 22
8.5 Point of operation hazards .. 22

9 Safeguarding of personnel - Risk assessment method ... 23
9.1 Requirements .. 23
9.2 Task and hazard identification ... 23
9.3 Risk estimation ... 23
9.4 Risk reduction determination .. 24
9.5 Safeguard selection ... 25
 9.5.1 Category R1 risk reduction ... 25
 9.5.2 Category R2 risk reduction ... 25
 9.5.3 Category R3 risk reduction ... 25
 9.5.4 Category R4 risk reduction ... 25
9.6 Selection validation ... 26
9.7 Documentation ... 26

10 Safeguarding of personnel - Implementation ... 26
10.1 Requirements of safety circuit performance ... 26
10.2 Limiting robot motion .. 27
 10.2.1 Mechanical limiting devices .. 27
 10.2.2 Non-mechanical limiting devices .. 27
 10.2.3 Dynamic limiting devices .. 27
10.3 Pendants .. 27
 10.3.1 New installations .. 27
 10.3.2 Existing installations .. 27
10.4 Safeguarding devices - application, integration and installation requirements ... 27
 10.4.1 Purpose of safeguarding devices .. 27
 10.4.2 Safeguarding device selection ... 28
 10.4.3 Safeguarding device safety distance .. 29
 10.4.4 Bypassing safeguarding devices .. 29
 10.4.5 Muting ... 30
 10.4.6 Safeguarding device electrical integration .. 30
 10.4.7 Start and Restart .. 31
10.5 Awareness means ... 31
 10.5.1 Awareness barrier .. 31
 10.5.2 Awareness signal .. 31
10.6 Procedures and training ... 31
11.9 Two hand control systems .. 41

12 Maintenance of robots and robot systems.. 42

13 Testing and start-up of robots and robot systems 42
 13.1 Interim safeguarding .. 42
 13.1.1 Selection of interim safeguards .. 43
 13.2 Manufacturer/integrators’ instructions 43
 13.3 Initial start-up procedure ... 43
 13.4 Personnel protection .. 44

14 Safety training of personnel .. 44
 14.1 Training objectives .. 44
 14.2 Training requirements .. 44
 14.2.1 Safeguard training ... 44
 14.2.2 Training the teacher .. 45
 14.2.3 Training the operator ... 45
 14.2.4 Training the APV operator ... 45
 14.2.5 Training maintenance personnel 46
 14.3 Retraining requirements ... 46

Tables
1 Hazard severity/exposure/avoidance categories 24
2 Risk reduction decision matrix prior to safeguard selection 24
3 Safeguard selection matrix .. 25
4 Safeguard selection validation matrix with safeguards installed 26
5 Minimum distance from hazard as a function of barrier opening size 28
6 Minimum distance from hazard for a device which signals a stop 29

Figures
1 Logic flow of document .. 1

Annex
A Graphical aids to understanding the standard 47
B Safeguarding device supplemental information 53
C Risk Assessment .. 62
D Training .. 68
E Bibliography ... 74
Foreword (Not part of American National Standard ANSI/RIA R15.06-1999)

The objective of this standard is to enhance the safety of personnel using industrial robot systems by establishing requirements for the manufacture (including remanufacture and overhaul,) installation, safeguarding methods, maintenance and repair of manipulating industrial robots.

To accomplish this objective, the Robotic Industries Association Subcommittee R15.06 on Safety considered the variety of tasks necessary for the efficient and productive use of Industrial Robots. The operational scope and characteristics of a robot may be significantly different than other equipment and machines, and certain tasks may require persons to be in the proximity of the robot while drive power is available. An industrial robot may not be a stand-alone machine, but rather may interact with other machines and equipment.

To assist in the interpretation of this standard, the Subcommittee intended that the manufacturer (including remanufacturer and rebuilder,) the installer, and the end user have specific responsibilities. From a practical standpoint, the ultimate responsibility for safeguarding of persons associated with industrial robots and industrial robot systems lies with the person(s) themselves. Safety cannot be regulated by a book; it must be a conscious effort on the part of all parties (manufacturer, integrator, and user.) Necessary components in every safeguarding system are the maintenance of and adherence to the system design. Personnel skills, training, and attitude are important factors in a safety program. This standard only serves to provide guidelines to a safe operation.

Terms which are defined in clause 3 appear in bold type when used in other definitions, and the first time they are used in context within each clause. The words “shall” and “will” are intended to be prescriptive, and required to be in compliance with this standard. The words “should” and “may” are meant to be recommendations and good practices. Notes used throughout the document are generally meant to provide explanatory information, but may be normative when the word convention above is used.

This standard is a revision of ANSI/RIA R15.06-1992. Changes were incorporated based on public comments received, and an extensive review by the R15.06 Subcommittee. Some of the most significant changes include:

- Requirement to retrofit some existing installations with enabling devices and other safeguarding requirements not meeting a minimum criteria (1.3)
- A major reorganization of the text, creating clauses for the addition of responsibilities for the manufacturer of safety devices (clause 5), separate and enhanced clauses for safeguarding of personnel (clause 7 - Introduction; clause 8 - Prescribed method; clause 9 - Risk assessment method; and clause 10 - Procedures), and safeguard device installation requirements (clause 11), and renumbering of paragraphs
- Deletion of attended continuous operation, and revised requirements for Attended Program Verification (10.8)
- Requirement for separate stopping circuits, emergency stop and safety stop (4.6 and 6.12)
− Additional requirements regarding pendants and enabling devices (4.7); control circuitry (4.5 and 10.1); awareness signals for failure to reach intended location (4.2.2) and singularity (4.10); and mechanical axis stops (4.11 and 6.5)

− Specific clearance requirements for teach (10.7.7) and APV (10.8.5)

− Additional charts, tables, and informative annexes

− Use of the term “space” in place of “envelope” to describe three dimensional robot operating requirements

Industry standards, including this one, are voluntary. The Robotic Industries Association makes no determination with respect to whether any robot, associated safety devices, manufacturer, or user is in compliance with this standard.

This standard contains five (5) annexes, all of which are informative.

Suggestions for improvement of the standard are welcome. They should be sent to the:

RIA Subcommittee on Safety
900 Victors Way, Suite 140
Ann Arbor, MI 48108

Consensus for approval of this standard as an American National Standard was achieved by balloting of the R15 Standards Approval Committee of the Robotic Industries Association (an accredited standards developing organization). Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, the R15 Standards Approval Committee had the following members:

William Drotning, Chairman

<table>
<thead>
<tr>
<th>Organization Represented</th>
<th>Name of Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB Flexible Automation</td>
<td>Michael Calardo</td>
</tr>
<tr>
<td>Adept Technology</td>
<td>Glyn Garside</td>
</tr>
<tr>
<td>Association for Manufacturing Technology</td>
<td>Charles Carlsson</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>Ken Bixby</td>
</tr>
<tr>
<td>Corning Incorporated</td>
<td>Roosevelt Dillard</td>
</tr>
<tr>
<td>Deneb Robotics</td>
<td>Brian Huse</td>
</tr>
<tr>
<td>Ford Motor Company</td>
<td>Tomas Pearson</td>
</tr>
<tr>
<td>General Electric Aircraft Engines</td>
<td>Keith Betscher</td>
</tr>
<tr>
<td>General Motors NAO Robotics</td>
<td>Leroy Rodgers</td>
</tr>
<tr>
<td>Genesis Systems</td>
<td>Charles Keibler</td>
</tr>
<tr>
<td>GM Delphi Saginaw Steering Systems</td>
<td>Larry Morel</td>
</tr>
<tr>
<td>IBM Corporation</td>
<td>Jerry Quint</td>
</tr>
<tr>
<td>International Union of Automobile Workers (UAW)</td>
<td>James Howe</td>
</tr>
<tr>
<td>John Deere Worldwide</td>
<td>Thomas Tabaska</td>
</tr>
<tr>
<td>Lehigh University</td>
<td>Duke Perreira</td>
</tr>
<tr>
<td>Liberty Mutual Group</td>
<td>John Russell</td>
</tr>
<tr>
<td>Mitsubishi Motor Manufacturing of America</td>
<td>Eugene Schlueter</td>
</tr>
<tr>
<td>Motoman</td>
<td>Izzat Hammad</td>
</tr>
<tr>
<td>National Electrical Manufacturers Association</td>
<td>Larry Miller</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>Nicholas Dagalakis</td>
</tr>
<tr>
<td>Panasonic Factory Automation</td>
<td>Martin Weir</td>
</tr>
<tr>
<td>PaR Systems</td>
<td>Todd Holt</td>
</tr>
<tr>
<td>R15.03 Subcommittee for Mechanical Interface</td>
<td>Hadi Akeel</td>
</tr>
<tr>
<td>R15.05 Subcommittee for Performance</td>
<td>James Wells</td>
</tr>
</tbody>
</table>
Subcommittee R15.06 on Industrial Robot Safety, which developed this standard had the following members:

Roberta Nelson, Chair

Hadi A. Akeel
Brad R. Barber
John Beard
Tom Bertellotti
Keith H. Betscher
Michael J. Bomya
John D. Brazil
Ray Butler
Ray Carby
Mike Carlson
Nicholas G. Dagalakis
Robert Dean
Tim Denaro
Roosevelt Dillard
Gil Dominguez

Corresponding, alternate and liaison members included:

Gerald Albaugh
Joe Alvité
Chris Anderson
Peter Barroso
Richard Baumann
Joseph P. Bellino
Alex Bilisland
Walter Bishop
Ken Bixby
Anthony Bodetti
Richard Breen
Rick Brookshire
Mike Brosius
Kirk Bunner
Joseph S. Byrd
Mike Calardo
Charles Carlsson
Kevin Clark
Steven Coate
Len Connor
Don Cowles
Howard DeWees
Brian Friedrichs
Peter Früauf
Anatoly Galperin
Bob Garfield
Dennis Grabowski
Les Graham

This is a preview of "ANSI/RIA R15.06-1999...". Click here to purchase the full version from the ANSI store.
Administrative services provided by J. D. (Jeff) Fryman, Jr. of the Robotic Industries Association

Illustrations courtesy of Ray Butler. Illustration B.2 by Roberta Nelson Shea, and B.3 by Malcolm Sharp
American National Standard for Industrial Robots and Robot Systems –

Safety Requirements

0 Introduction

This standard assigns responsibilities for industrial robot safety to manufacturers, integrators, installers, and the user. Proper safeguarding of personnel is determined as prescribed in clause 8 or clause 9. The standard is best read in its entirety for full comprehension of requirements. Figure 1 gives a graphic presentation of the flow of responsibilities through the document.

Figure 1 – Logic flow of document