

# Society of Cable Telecommunications Engineers

# **ENGINEERING COMMITTEE Digital Video Subcommittee**

### AMERICAN NATIONAL STANDARD

**ANSI/SCTE 40 2016** 

**Digital Cable Network Interface Standard** 

## **NOTICE**

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called "documents") are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interchangeability, best practices and ultimately the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents, and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

Attention is called to the possibility that implementation of this document may require the use of subject matter covered by patent rights. By publication of this document, no position is taken with respect to the existence or validity of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at <a href="http://www.scte.org">http://www.scte.org</a>.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc. 2016 140 Philips Road Exton, PA 19341

### TABLE OF CONTENTS

| 1.0 | Scope                                                 | 1        |
|-----|-------------------------------------------------------|----------|
| 2.0 | DEFINITIONS and Acronyms                              | 2        |
| 2.1 | Compliance Notation                                   | 2        |
| 2.2 | Glossary                                              | 2        |
| 3.0 | Normative references                                  | 6        |
| 3.1 | SCTE References                                       | <i>6</i> |
| 3.2 | Standards from other Organizations                    | 7        |
| 4.0 | Informative References                                |          |
| 4.1 | SCTE References                                       | 7        |
| 4.2 | Standards from Other Organizations                    |          |
| 5.0 | Reference acquisition                                 | 9        |
| 6.0 | PHYSICAL IAYER Characteristics                        | 10       |
| 6.1 | J                                                     |          |
| 6   | Maximum Individual Carrier Amplitude                  |          |
| 6.2 | Frequency Plan                                        | 10       |
| 6.3 | Communications Channels                               |          |
| 6   | Forward Application Transport (FAT) Channels          | 11       |
|     | NTSC Analog Channels                                  |          |
|     | Out-Of-Band Forward Data Channels (FDC)               |          |
|     | Out-Of-Band Reverse Data Channels (RDC)               |          |
| 6   | DOCSIS Upstream and Downstream Channels               | 13       |
| 6.4 | Downstream Transmission Characteristics               |          |
| 6   | RF Signal Levels and Adjacent Channel Characteristics | 17       |
| 7.0 | Transport Layer Protocols                             | 20       |
| 7.1 | Forward Application Transport (FAT) Channels          | 20       |
| 7.2 | Out-of-Band Forward Data Channels (FDC)               | 21       |
| 7.3 | Out-of-Band Reverse Data Channels (RDC)               | 21       |
| 8.0 | Services and Related Protocol Stacks                  | 21       |

| 8.1 | Audio-Visual Services                                 | 23         |
|-----|-------------------------------------------------------|------------|
| 8.1 | .1 Analog Audio-Visual Services                       | 23         |
| 8.1 |                                                       |            |
| 8.1 |                                                       |            |
| 8.2 | Data Services                                         | 24         |
| 8.3 | In-Band Service/System Information                    | 24         |
| 8.4 | Out-of-Band Service/System Information                | 25         |
| 8.5 | Emergency Alert System (EAS)                          |            |
| 8.6 | Closed Captioning                                     | 2 <i>6</i> |
| 8.6 | 5.1 Analog Television Programs                        |            |
| 8.6 |                                                       |            |
| 8.7 | Digital Television (DTV) Content Advisory Information | 26         |
|     |                                                       |            |

### LIST OF FIGURES

| Figure 1 Cable Network Interface                                                  | 1  |  |
|-----------------------------------------------------------------------------------|----|--|
| Figure 2 FAT Channel Physical Layer Protocol                                      | 12 |  |
| Figure 3 Out-of-band Forward Data Channel Lower Layer Protocols                   | 13 |  |
| Figure 4 Out-of-band Reverse Data Channel Lower Layer Protocols                   |    |  |
| Figure 5 FAT Channel Transport Layer Protocol                                     | 21 |  |
| Figure 6 Interrelation of Service Channels, Logic Interfaces and Applications for |    |  |
| Scrambled Programming                                                             | 22 |  |
| Figure 7 Interrelation of Service Channels, Logic Interfaces and Applications for |    |  |
| Unscrambled Programming                                                           | 23 |  |
| Figure 8 Modified Protocol Stack for Audio-Visual Services                        | 24 |  |
| Figure 9 Protocol Stack for Out-of-Band Service/System Information                | 25 |  |
| Figure 10 Protocol Stack for Inband EAS                                           |    |  |
|                                                                                   |    |  |
| LIST OF TABLES                                                                    |    |  |
| Table 1. Digital Cable Network Frequency Bands                                    | 11 |  |
| Table 2. FDC Channel: RF Transmission Characteristics                             |    |  |
| Table 3. RDC Channel: RF Transmission Characteristics                             | 14 |  |
| Table 4. Analog and FAT Channel: RF Transmission Characteristics                  | 16 |  |
| Table 5. Nominal Relative Carrier Power Levels                                    | 18 |  |
| Table 6 Adjacent Channel Characteristics                                          | 10 |  |

## **Digital Cable Network Interface Standard**

### 1.0 SCOPE

NOTE: This document is identical to SCTE 40 2011 except for informative components such as the title page, NOTICE text, headers and footers. No changes have been made to any text in the document beyond this point, other than headers and footers.

This standard defines the characteristics and normative specifications for the digital network interface between a cable television system and commercially available digital cable products that are used to access multi-channel television programming (See Figure 1). The network interface is also compatible with existing analog and digital set-top terminal equipment owned by cable operators and with terminal equipment developed via the OpenCable<sup>TM</sup> specification process (See <a href="www.opencable.com">www.opencable.com</a>). All specifications in this document apply at the Demarcation Point except as specifically noted. Specifications noted to apply at the terminal device are applicable regardless of whether that device is owned by the subscriber or the cable operator. The key functional characteristics assumed in this document are the following:

- The cable network provides services utilizing 6-MHz in-band channel(s), out-of-band forward data channel(s), and out-of-band reverse data channel(s). The 6-MHz in-band channels follow the CEA-542-C channel-tuning plan. However, the frequency location can change over time such that analog and digital channels could be located anywhere in the downstream operating range. Nothing in this standard precludes the use of other narrowband or wideband digital signals.
- The 6 MHz in-band channels are used to transport digital services (QAM modulated MPEG-2 transport streams) as well as analog services (NTSC AM-VSB channels). Nothing in this standard precludes the use of other modulation modes.
- Services are either in the clear or protected using conditional access technology.

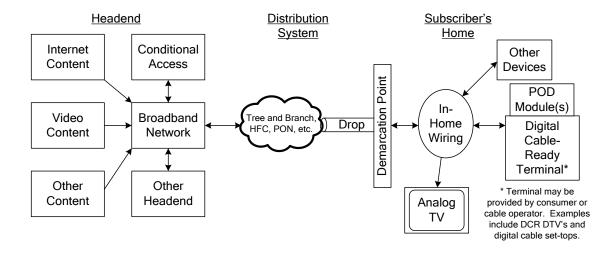



Figure 1 Cable Network Interface