FOREWORD

This standards document is published by the Security Industry Association (SIA) and was developed and adopted by a consensus of industry volunteers in accordance with SIA’s standards development policies and procedures. It is intended to facilitate product compatibility and interchangeability, to reduce misunderstandings between manufacturers and purchasers, and to assist purchasers in obtaining the proper products to fulfill their particular needs.

The existence of this or any SIA standards document shall not prevent any SIA member or non-member from manufacturing, selling, or using products not conforming to this or any SIA standard. SIA standards are voluntary. SIA encourages the use of this document but will not take any action to ensure compliance with this or any other SIA Standard.

SIA assumes no responsibility for the use, application or misapplication of this document. Industry members using this document, particularly those having participated in its development and adoption, are considered by SIA to have waived any right they might otherwise have had to assert claims against SIA regarding the development process of this standard.

Although some SIA standards establish minimum performance requirements, they are intended neither to preclude additional product features or functions nor to act as a maximum performance limit. Any product the specifications of which meet the minimum requirements of a SIA standard shall be considered in compliance with that standard. Any product the specifications of which exceed the minimum requirements of a SIA standard shall also be considered in compliance with the standard, provided that such product specifications do not exceed any maximum requirements set by the standard. SIA standards are not intended to supersede any recommended procedures set by a manufacturer for its products.

SIA reserves the right to revise this document at any time. Because SIA policy requires that every standard be reviewed periodically and be either revised, reaffirmed, or withdrawn, users of this document are cautioned to obtain and use the most recent edition of this standard. Current information regarding the revision level or status of this or any other SIA standard may be obtained by contacting SIA.

Requests to modify this document are welcome at any time from any party, regardless of membership affiliation with SIA. Such requests, which must be in writing and sent to the address set forth below, must clearly identify the document and text subject to the proposed modification and should include a draft of proposed changes with supporting comments. Such requests will be considered in accordance with SIA’s standards development policies and procedures.

Written requests for interpretations of a SIA standard will be considered in accordance with SIA’s standards development policies and procedures. While it is the practice of SIA staff to process an interpretation request quickly, immediate responses may not be possible since it is often necessary for the appropriate standards subcommittee to review the request and develop an appropriate interpretation.

Requests to modify a standard, requests for interpretations of a standard, or any other comments are welcome and may be sent to:

Standards
Security Industry Association
635 Slaters Lane, Suite 110
Alexandria, VA, 22314

E-mail:
Standards@SIAOnline.org

This document is owned by the Security Industry Association and may not be reproduced, in whole or part, without the prior written permission from SIA.
ACKNOWLEDGEMENTS

Chairman of the SIA Standards Committee:
ADT ... William N. Moody

Chairman of the SIA Computer Interface Standards Working Group:
Caddx Controls ... John Jeffers

Contributing Members of the CIS Working Group:

Ademco ... Rich Hinkson
Advanced Algorithms ... Greg Spar
Bold Technologies ... Kurt Emauelson
DS/Radionics ... Rich Ader
Protection One ... Noble Hetherington

This standard was approved by open industry vote on April 5, 2001

ADT ... Dennis Yanek
DSC ... David Clarke
DS/Radionics ... Rich Ader
Interlogix ... John Jeffers
SG Security Comm... Stephan Frenette
Revision History
The following are changes made to this document, listed by revision.

APRIL 2001 BASELINE
Original Publication
Table of Contents

1 SCOPE & PURPOSE ..1
 1.1 SCOPE ...1
 1.2 PURPOSE ...1

2 REFERENCE DOCUMENTS ...2
 2.1 RELATED AREAS ...2
 2.2 OTHER SUPPORTING RESOURCES ..3

3 CONVENTIONS AND DEFINITIONS ...3
 3.1 CONVENTIONS ..3
 3.1.1 Units of Measurement ...3
 3.1.2 Tolerances ..3
 3.1.3 Special Capitalization ...3
 3.1.4 Nomenclature and Identification of Sections ...3
 3.1.5 Binding Language ...3
 3.2 DEFINITIONS ...3

4 MECHANICAL AND ELECTRICAL LAYERS ...5
 4.1 MECHANICAL INTERFACE ...5
 4.2 ELECTRICAL INTERFACE ...6
 4.2.1 RS-232 DB-25 ..6
 4.2.2 RS-232 DB-9 ..6
 4.2.3 10BT/100BT Ethernet ..6
 4.2.4 USB ...6

5 TRANSMISSION LAYER ...6
 5.1 SIGNAL PROTOCOL ..6
 5.1.1 Signaling ..6
 5.2 PHYSICAL LAYER ..7
 5.2.1 RS-232 ..7
 5.2.2 Ethernet ...7
 5.2.3 USB ...7

6 PACKET PROTOCOL ..7
 6.1 PACKET FLOW ...7
 6.2 ROUTING ...8

7 MESSAGE PACKET STRUCTURE ...8
 7.1 MESSAGE PACKET ...8
 7.1.1 <LF> Line Feed ..9
 7.1.2 <CRC> Cyclic Redundancy Check ...9
7.1.3 <0LLL> Packet Length ...9
7.1.4 <"ID"> ID Token ...9
7.1.5 <Sequence#|segment#|> ..9
7.1.6 <Receiver#> ..10
7.1.7 <Line#> ..10
7.1.8 [...]data [...] ..10
7.1.9 <timestamp> ...10
7.1.10 <CR> ...11

7.2 LONG MESSAGES ...11

7.3 MESSAGE PROTOCOL ...11

7.4 INITIATING PACKETS ...12
7.4.1 Data Packet ...12
7.4.2 NULL Packet (Link Test) ...12
7.4.3 Data / Operation Request Packet ..12
7.4.4 Response Packets ..12
7.4.5 ACK Packet ..13
7.4.6 NAK Packet ..13
7.4.7 RTN Packet ...13
7.4.8 DUH Packet ..13
7.4.9 Unrecognized Data Message ..14

8 ASSURANCE LAYER ..14
8.1 MESSAGE INTEGRITY ...14
8.2 FAULT DETECTION ...14
8.3 FAULT REACTION ...14
8.3.1 Communications Failure ...14
8.3.2 Communication Trouble ...15
8.3.3 Link Integrity ..15

APPENDIX A - MESSAGE ID TOKENS ..16

APPENDIX B - PACKET SIZE AND PACKET CYCLIC REDUNDANCY CHECK CALCULATION ..33

APPENDIX C - ADDITIONAL EXAMPLES ...37
1 SCOPE & PURPOSE

1.1 Scope
This standard describes an interface format for communications between alarm signal receivers and automation computers. This standard is intended for use by equipment in security industry alarm monitoring centers, with possible uses in the areas of energy control and facilities monitoring and management.

This standard provides a common interface format for across-the-board compatibility of equipment, regardless of manufacturer, and provides for all the known communication needs between the computer and receiver.

This standard defines basic “codes” to identify commonly used dialer protocols used in alarm signal transmitters, as well as conditions in the central station equipment that require a technician or other manual attention.

Additions to these codes may be by application to SIA. Independent extensions to the codes will render a device non-compliant. Requests for additional codes, additional message fields, message interpretations or revisions to the standard, should be submitted to SIA. The request will be distributed to the Subcommittee members for review and approval.

The standard is voluntary and self-enforcing. In the case of incompatibility, the problem should be resolved to the extent possible by manufacturer-to-manufacturer discussions. SIA’s Digital Communications Standards Subcommittee will act as an arbitration body if the problem cannot be otherwise resolved.

1.2 Purpose
This standard provides for the following objectives:

- Accommodate forwarding of messages received through standard security industry digital communications dialer protocols (SIA Format, SIA 2000, Ademco Contact ID) as well as all other common transmitter protocols
- Minimize the amount of processing required by the receiver (and allow the receivers to handle data from many transmitters)
- Minimize the transmission error rate
- Allow for a data message to have variable length and content