ANSI / SPI B151.31-2014

American National Standard for Plastics Machinery

Safety Requirements for the Manufacture and Use of Blow Molding Machines

Secretariat and Accredited Standards Developer:
SPI: The Plastics Industry Trade Association
1667 K Street, NW, Suite 1000
Washington, DC 20006
www.plasticsindustry.com

Approved: 26 FEBRUARY 2014
by the American National Standards Institute

COPYRIGHT PROTECTED DOCUMENT
Copyright © 2014 by SPI
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of SPI.
PREFACE to this AMERICAN NATIONAL STANDARD

The information contained in this Preface is not a normative part of this American National Standard (ANS) and has not been processed in accordance with ANSI's requirements for an ANS. As such, this Preface may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the standard.

By approving this American National Standard, the ANSI Board of Standards Review confirms that the requirements for due process, consensus, balance and openness have been met by the Society of the Plastics, Industry, Inc. (SPI, the ANSI-accredited standards developing organization).

American National Standards are developed through a consensus process. Consensus is established when substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward resolution. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While SPI administers the process and establishes procedures to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards or guidelines.

American National Standards are promulgated through ANSI for voluntary use; their existence does not in any respect preclude anyone, whether they have approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. However, users, distributors, regulatory bodies, certification agencies and others concerned may apply American National Standards as mandatory requirements in commerce and industry.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of an American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the Secretariat (SPI).

Neither SPI nor any of the organizations or individuals that assisted in authoring, developing, editing and/or distributing this standard (SPI and such organizations and individuals collectively referred to as the “Contributing Parties”) makes any warranty, either expressed or implied, as to the fitness of merchantability or accuracy of the information contained within this standard. The Contributing Parties disclaim and make no warranty that the information in this document will fulfill any of your particular purposes or needs. The Contributing Parties disclaim liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application or reliance on this document. The Contributing Parties do not undertake to guarantee the performance of any individual supplier or seller's products or services by virtue of this standard or guide, nor does it take any position with respect to the validity of any patent rights asserted in connection with the items which are mentioned in or are the subject of this document. The Contributing Parties disclaim liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

In publishing or making this document available, the Contributing Parties are not undertaking to render professional or other services for or on behalf of any person or entity, nor are the Contributing Parties undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment, or as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. In addition to conforming to the requirements of this standard, the responsible personnel must also make an independent determination as to whether a machine, activity or condition complies with the applicable legal requirements in the relevant jurisdiction(s).

© 2014 – Society of the Plastics Industry
SPI has no power, nor does it undertake, to police or enforce conformance to the requirements of this voluntary standard. SPI does not certify, test or inspect products, designs, or installations under this standard for safety or health purposes. Any certification or other statement of conformance to any health or safety-related information in this document shall not be attributable to SPI and is solely the responsibility of the certifier or maker of the statement.

NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. You may contact the Secretariat for current status information on this standard.

Individuals interested in obtaining up-to-date information on standards can access this information at www.nssn.org (or by contacting ANSI). NSSN - A National Resource for Global Standards provides a central point to search for standards information from worldwide sources and can connect those who seek standards to those who supply them.

Published by:

The Society of the Plastics Industry, Inc. d/b/a SPI: The Plastics Trade Industry Association
1667 K Street NW, Suite 1000
Washington, DC 20006

Copyright © 2014 by The Society of the Plastics Industry, Inc.
All rights reserved. Printed in the United States of America
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
Foreword
(This Foreword is not a normative part of American National Standard ANSI/SPI B151.31-2014.)

This standard is a merger of two prior American National Standards; ANSI/SPI B151.15 (Extrusion Blow Molding Machines - Safety Requirements for Manufacture, Care, and Use) and ANSI/SPI B151.21 (Injection Blow Molding Machines - Safety Requirements for Manufacture, Care, and Use). These standards have been merged, revised and re-designated ANSI/SPI B151.31- 2014; Safety Requirements for the Manufacture and Use of Blow Molding Machines. These standards were revised and merged because:

1) The scope needed to be expanded and the title modified;
2) Some illustrations required modification to conform to the text and some illustrations were deleted to permit design freedom;
3) Additional definitions were required;
4) Some paragraphs required modification and some paragraphs were added to conform more closely with changes in technology;
5) Some paragraphs required modification for clarity and intent.

The project on safety requirements for the manufacture, care, and use of blow molding machines was initiated under the auspices of the Injection Blow Molding Section of the Machinery Division, and the Safety Committee of the Molders Management Division, of the Society of the Plastics Industry, Inc. (SPI).

Both divisions of the SPI have long been concerned with operator safety on plastics processing equipment. Accordingly, each section of the divisions has established a standards development committee charged with the task of establishing necessary standards.

A standard treating the manufacture, care, and use of injection molding machines is complicated by the wide variety and sizes of machines manufactured and in use, and by the virtually infinite combinations of parts being produced, the production methods used, and the operating conditions existing in industry today.

The primary objective of this standard is to minimize hazards to personnel associated with machine activity by establishing requirements for the manufacture, care, and use of these machines. To accomplish this objective, the committee decided to approach the problem of machine safety from two directions:

1) Eliminating by design certain recognized hazards and establishing standard approaches to design so that machines available from competitive suppliers will have similar operational characteristics
2) Safeguarding the machine to protect personnel from recognized hazards

To assist in the interpretation of these requirements, responsibilities have been assigned to the supplier, the remanufacturer, the modifier, and the user.

Effective Date
The following information on effective dates is informative guidance only, and not a normative part of this standard. This committee recognizes that some period of time after the approval date on the title page of this document is necessary for suppliers and users to develop new designs, or modify existing designs or manufacturing processes in order to incorporate the new or revised requirements of this standard into their product development or production system.

This committee recommends that suppliers complete and implement design changes for new machines and machinery systems within 12 months of the approval of this standard.
The committee recommends that users evaluate whether existing machinery and machinery systems have acceptable risk within 36 months of the approval date of this standard using generally recognized risk assessment methods. If the risk assessment shows that modification(s) is necessary, refer to the requirements of this standard or the machine-specific (C-level) standard to implement risk reduction measures (protective measures) for appropriate risk reduction.

The ANSI/SPI B151.31 is considered a “type-C” standard. SPI standards can be associated with the ISO “A-B-C level” structure as described below:

- **Type-A standards** (basis standards) give basic concepts, principles for design, and general aspects that can be applied to machinery (e.g., ANSI B11.0; ANSI/ISO 12100);
- **Type-B standards** (generic safety standards) deal with one or more safety aspects or one or more types of safeguards that can be used across a wide range of machinery (e.g., ANSI B11.19; ISO 13849-1);
- **Type-C standards** (machinery safety standards) deal with detailed safety requirements for a particular machine or group of machines.

Suggestions for improvement of this standard will be welcome. They should be sent to the SSPI: The Plastics Industry Trade Association, 1667 K Street, NW, Suite 1000, Washington, DC 20006-1620

Consensus for this standard was achieved by use of the Canvass Method.

The Blow Molding Safety Committee of the Equipment Council, The Society of the Plastics Industry, Inc, which was responsible for this standard, had the following members:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuck Flammer</td>
<td>Kautex Machines</td>
<td>Chairman</td>
</tr>
<tr>
<td>David Felinski</td>
<td>SPI</td>
<td>Secretary</td>
</tr>
<tr>
<td>Wolfgang Arhelger</td>
<td>Bekum America</td>
<td></td>
</tr>
<tr>
<td>Steve Boyette</td>
<td>Ross Controls</td>
<td></td>
</tr>
<tr>
<td>Eric Cummings</td>
<td>Ross Controls</td>
<td></td>
</tr>
<tr>
<td>Farid Danial</td>
<td>Ipex</td>
<td></td>
</tr>
<tr>
<td>Larry Keller</td>
<td>Milacron LLC</td>
<td></td>
</tr>
<tr>
<td>Mark Kennedy</td>
<td>R&B Holdings</td>
<td></td>
</tr>
<tr>
<td>Marco Malandra</td>
<td>Magic MP</td>
<td></td>
</tr>
<tr>
<td>Denny Meckler</td>
<td>Bosch-Rexroth</td>
<td></td>
</tr>
<tr>
<td>Loren Mills</td>
<td>S.A.F.E. LLC</td>
<td></td>
</tr>
<tr>
<td>Kirk Myers</td>
<td>Bekum America</td>
<td></td>
</tr>
<tr>
<td>Bernd Nötel</td>
<td>VDMA</td>
<td></td>
</tr>
<tr>
<td>Mark Panaro</td>
<td>Davis Standard, LLC</td>
<td></td>
</tr>
<tr>
<td>Jim Pilavdzic</td>
<td>Husky</td>
<td></td>
</tr>
<tr>
<td>Steven R. Rocheleau</td>
<td>Rocheleau Tool & Die Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>Tom Scheck</td>
<td>Eurotherm</td>
<td></td>
</tr>
<tr>
<td>Steve Schroeder</td>
<td>Invensys</td>
<td></td>
</tr>
<tr>
<td>Doug Sten, PhD, CSP</td>
<td>Safety Oriented Services, LLC</td>
<td></td>
</tr>
</tbody>
</table>

Secretariat to the Committee: Jackie Dalzell, The Society of the Plastics Industry, Inc.
Table of Contents

Foreword... iv
Effective Date .. iv

1 Scope, purpose, application and installation .. 10
 1.1 Scope... 10
 1.2 Purpose .. 10
 1.3 Application .. 11
 1.4 All installations .. 11

2 Normative references .. 11
 2.1 Informative references .. 12

3 Definitions .. 13

4 Care—Responsibility for ... 17
 4.1 Instructions .. 17
 4.1.1 Supplier ... 17
 4.1.2 Modifier .. 17
 4.1.3 Remanufacturer ... 17
 4.1.4 Training of maintenance and/or set-up personnel ... 17
 4.1.5 Training of operator personnel .. 17
 4.2 Inspection and maintenance ... 18

5 Manufacture, remanufacture, repair, modification, and rebuild 18
 5.1 Responsibility ... 18
 5.1.1 Manufacture .. 18
 5.1.2 Remanufacture .. 18
 5.1.3 Modification ... 18
 5.1.4 Repair ... 18
 5.1.5 Rebuild .. 18
 5.2 Training of maintenance and/or set-up personnel .. 18
 5.3 Inspection and maintenance .. 18

6 List of Hazards ... 19
 6.1 Specific machine areas where hazards exist .. 19
 6.1.1 Plasticizing and/or injection unit area(s) .. 19
 6.1.2 Molding area ... 20
 6.1.3 Part takeout and finishing area(s) .. 20
 6.1.4 Power sources ... 21
 6.2 General hazards / hazardous locations ... 21
 6.2.1 Thermal hazards ... 21
 6.2.2 Stored and residual energy ... 21
 6.2.3 Vapors .. 21

7 Safety requirements and/or methods .. 21
 7.1 General guarding ... 21
 7.1.1 Plasticizing and/or injection unit area ... 24
 7.1.2 Barrel .. 24
 7.2 Heating/Cooling system .. 25

© 2014 – Society of the Plastics Industry
7.2.1 Fan blades ... 25
7.2.2 Hoses ... 25
7.2.3 Motor shaft and coupling ... 25
7.2.4 Heating/Cooling system components 25
7.2.5 Nozzle area(s) .. 25
7.2.6 Accumulator for plastic ... 26
7.2.7 Die head ... 26

7.3 Molding area ... 26
7.3.1 Mold area protection .. 26
7.3.2 Moveable gate .. 26
7.3.3 Power operated gate .. 27
7.3.4 Part take-out and finishing area(s) 29
7.3.5 Power sources ... 29

7.4 General safety requirements .. 30
7.4.1 Window ... 30
7.4.2 Thermal hazards ... 30
7.4.3 Electrical requirements ... 30
7.4.4 Mold set ... 37
7.4.5 Start-up .. 38

8 Existing BMMs .. 38

9 Use .. 38
9.1 Training of operators, set-up and supervisory personnel 38
9.2 Work area .. 38
9.3 Load/unload and core/ejector area guarding 39
9.4 Temperature set point .. 39
9.5 Material pre-drying ... 39
9.6 Vented barrels ... 39
9.7 Ventilation ... 39
9.8 Ancillary equipment ... 39
9.9 Personnel protective equipment 40
9.10 Interrupted operation .. 40
9.11 Nozzle modification ... 40
9.12 Hose inspection ... 40
9.13 Molding with inserts ... 40
9.14 Lock-out/tag-out .. 40

10 Safety signs .. 40

ANNEX A – Interlocks Types for Non-Electrical Axis 41
A1 – Movable Interlocking Guard Type I 41
A2 – Movable Interlocking Guard Type II 42
A3 – Movable Interlocking Guard Type III 43

ANNEX B – Interlock Types for Electrical Axis 45
B1 – Principle of interlocking corresponding to type I using one electromechanical component 45
B2 – Example of interlocking corresponding to type I using the motor control unit 46
B3 – Example of interlocking corresponding to type II using one electromechanical component 47
B4 – Example of interlocking corresponding to type II using the motor control unit with external standstill detector ... 48
B5 – Example of interlocking corresponding to type II using the motor control unit with integrated standstill detector .. 49
B6 – Example of interlocking corresponding to type III, using electromechanical components .. 50
B7 – Example of interlocking corresponding to type III using one electromechanical component ... 51
B8 – Example of interlocking corresponding to type III using motor control unit with external standstill detector (6) ... 52
B9 – Example of interlocking corresponding to type III using motor control unit with integrated standstill detector (6) ... 53

ANNEX C – Flow Chart Leading to Standstill and Safe Standstill 54

ANNEX D – Light Curtain as Protective Device .. 55
D.1 Mode of operation of the light curtain .. 55
D.2 Automatic monitoring requirements ... 55
D.3 Calculating the Safe Distance .. 56
 D3.1 ANSI B11.19 formula ... 56
 D3.2 ISO 13855 formula .. 56
This ANSI/SPI B151.31 – 2014 American National Standard uses a two-column format to provide supporting information for requirements. The material in the left column is confined to “Standards Requirements” only, and is so captioned. The right column, captioned "Explanatory Information" contains information that the writing committee believed would help clarify the requirements of the standard or to provide examples or additional reference information. This column is not a normative part of the standard as it contains no requirements and should not be construed as being a part of the requirements of this American National Standard.

As in all American National Standards, the term “SHALL” denotes a requirement that is to be strictly followed in order to conform to this standard; no deviation is permitted. The term “SHOULD” denotes a recommendation, a practice or condition among several alternatives, or a preferred method or course of action.

Similarly, the term “CAN” denotes a possibility, ability or capability, whether physical or causal, and the term “MAY” denotes a permissible course of action within the limits of the standard.

To achieve uniform interpretation, it is imperative to read and understand the definitions (clause 3) of this standard.

B151 conventions: Operating rules (safe practices) are not included in either column of this standard unless they are of such nature as to be vital safety requirements, equal in weight to other requirements, or guides to assist in compliance with the standard. The Annex includes common procedures practiced on plastics machinery. This is considered “Explanatory Information” and is supplementary to the standard. The B151 standards generally do not use the term “and/or” but instead, the term “OR” is used as an inclusive disjunction, meaning **one or the other or both.**

Suggestions for improvement of this standard are welcomed. They should be sent to:
SPI: The Plastics Trade Industry Association
1667 K Street NW, Suite 1000
Washington, DC 20006 - Attention: B151 Secretariat.
1 Scope, purpose, application and installation

1.1 Scope
The requirements of this standard shall apply to the manufacture and use of all Blow Molding Machines (BMMs) that process plastic materials to:

- blow a parison;
- blow a preform (including injection blow, injection stretch blow, and reheat & blow) into the shape of a mold cavity held together by a vertically or horizontally acting clamp(s).

BMM suppliers and users shall use the risk assessment process in the manufacture, care, and use of the machinery.

Deviations from the requirements of this standard shall be based on a documented risk assessment.

Safety requirements for the manufacture or use of ancillary equipment for BMMs are not covered by this standard.

E1.1 This includes:
- extrusion blow molding machines;
- injection stretch blow molding machines;
- injection blow molding machines;
- reheat & blow molding machines.

In developing the requirements of this standard, the committee used the risk assessment process. A list of hazards typical of BMMs appears in clause 6. For each hazard identified, the committee assessed the potential severity of injury related to the hazard, the frequency of exposure to the hazard, and possible avoidance. This process involved discussion among the committee, and resulted in the recommended risk reduction measures included in clauses 7 through 10. Compliance with this standard is considered to adequately control hazards identified in clause 6. Other hazards not listed in clause 6 that can occur with BMMs should be evaluated using the risk assessment process and may require additional risk reduction measures not included in this standard.

See ANSI B11.0 or ANSI/PMMI B155.1 for additional information on the risk assessment process.

1.2 Purpose
The purpose of this standard is to identify and address known hazards to personnel working on, or adjacent to, Blow Molding Machines.