Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

 Most recent

ASTM D5839-15(2023)

Standard Test Method for Trace Element Analysis of Hazardous Waste Fuel by Energy-Dispersive X-Ray Fluorescence Spectrometry

1.1 This test method applies to the determination of trace element concentrations by energy-dispersive X-ray fluorescence (EDXRF) spectrometry in typical liquid hazardous waste fuels (LHWF) used by industrial furnaces.

1.2 This test method has been used successfully on numerous samples of LHWF that are mixtures of solvents, oils, paints, and pigments for the determination of the following elements: Ag, As, Ba, Cd, Cr, Hg, Ni, Pb, Sb, Se, and Tl.

1.3 This test method also may be applicable to elements not listed above and to the analysis of trace metals in organic liquids other than those used as LHWF.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


Content Provider
ASTM International [astm]


Document History
Revises:
Included in Packages
This standard is not included in any packages.
Amendments & Corrections
We have no amendments or corrections for this standard.
ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS