Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Hybrid Electric Road Vehicle

Electric Vehicle standards address design considerations unique to electric vehicles and, by standardizing terminology and vocabulary, provide a foundation for other standards to delve into deeper details. Here, ISO, IEC, and SAE provide standards specific to hybrid and plug-in electric vehicles with a focus on testing, fuel economy, emissions, and communications. These standards are related to hybrid road vehicles that use both stored electricity and gasoline.


ISO 23274-1:2019

Hybrid-electric road vehicles - Exhaust emissions and fuel consumption measurements - Part 1: Non-externally chargeable vehicles

This document specifies a chassis dynamometer test procedure to measure the exhaust emissions and the electric energy and fuel consumption for the vehicles. This document applies to vehicles with the following characteristics: vehicles classified as passenger cars or light duty trucks, as defined in the relevant regional applicable driving test (ADT) standard; the nominal energy of the rechargeable energy storage system (RESS) is at least 2 % of the total energy consumption over an ADT; internal combustion engine (ICE) only using liquid fuels (for example, gasoline and diesel fuel). NOTE In the case of the vehicles with ICE using other fuel [for example, compressed natural gas (CNG), liquefied petroleum gas (LPG), hydrogen], this document can apply except the measurement of consumed fuel; otherwise the measurement method for those using the corresponding fuel can apply. This document proposes procedures for correcting the measured emissions and fuel consumption of hybrid-electric vehicles (HEVs), in order to obtain the values when the state of charge (SOC) of the RESS does not remain the same between the beginning and the end of an ADT. It can also be applied to measurement procedures for exhaust emissions and fuel consumption of externally chargeable HEVs when a vehicle is not externally charged and operated only in the charge sustaining (CS) state, as described in ISO 23274 2.


ISO 23274-2:2021

Hybrid-electric road vehicles - Exhaust emissions and fuel consumption measurements - Part 2: Externally chargeable vehicles

This document specifies a chassis dynamometer test procedure to determine the end of the charge-depleting state (CD) and consumed electric energy during CD state. The identification of the end of the CD state is an important step for procedures to determine exhaust emissions and fuel consumption. Final determination of exhaust emissions and fuel consumption is not included in this document. This document applies to vehicles with the following characteristics. — The vehicles are hybrid-electric road vehicles (HEV) with an internal combustion engine (ICE) and an on-board rechargeable energy storage system (RESS) for vehicle propulsion which is supplied with electric energy from an external electric power source. — A CD state, in which the electric energy in the RESS from an external electric power source is consumed, is followed by a charge-sustaining (CS) state in which the fuel energy is consumed sustaining the electric energy of the RESS. — Only batteries are assumed as the RESS of a vehicle. — The RESS is not charged while driving unless by regenerative braking and/or by generative operation driven via the ICE. — External charge for the purpose of conditioning of the RESS is not included. NOTE 1 Trolleybuses and solar powered vehicles are not included in the scope. — The vehicle is classified as a passenger car or light duty truck, as defined in the relevant regional applicable driving test (ADT) standard. — For the ICE, only liquid fuels (for example, gasoline and diesel fuel) are used. NOTE 2 In the case of vehicles with ICE using other fuel [for example, compressed natural gas (CNG), hydrogen (H 2 )], this document can apply except the measurement of consumed fuel; otherwise the measurement method for those using the corresponding fuel can apply. — The nominal energy of the RESS is at least 2 % of the total energy of consumed fuel over an ADT


ISO/TR 11955:2008

Hybrid-electric road vehicles - Guidelines for charge balance measurement

ISO/TR 11955 describes procedures of charge balance measurement to ensure necessary and sufficient accuracy of a fuel consumption test on hybrid-electric vehicles (HEV) with batteries, which is conducted based on ISO 23274.


SAE J 1711-2010 (SAE J1711-2010)

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-In Hybrid Vehicles

This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, Ndx, CO\d2); instead, that decision will depend on the objectives of the tester. The emissions calculations for plug-in hybrid-electric vehicle (PHEV) operation are provided as inventory results, weighted in the same manner as fuel and electrical energy consumption. Decisions for on-board versus off-board emissions, relative benefits of emissions-free driving, and how best to weight a 'cold-start' cycle in charge-depleting (CD) mode must first be made before a certification methodology can be determined. Thus, calculations or test methodology intended to certify a PHEV for compliance of emissions standards is beyond the scope of this document. For purposes of this test procedure, an HEV is defined as a road vehicle that can draw propulsion energy from both of the following sources of stored energy: (1) a consumable fuel and (2) a rechargeable energy storage system (RESS) that is recharged by the on-board hybrid propulsion system, an external electric energy source, or both. Consumable fuels that are covered by this document are limited to petroleum-based liquid fuels (e.g., gasoline and Diesel fuel), alcohol-based liquid fuels (e.g., methanol and ethanol), and hydrocarbon-based gaseous fuels (e.g., compressed natural gas). The RESSs that are covered by this document include batteries, capacitors, and electromechanical flywheels. Procedures are included to test CD operating modes of HEVs designed to be routinely charged off-board, and calculations are provided that combine the CD and charge-sustaining (CS) behavior according to in-use driving statistics. Single-roll, electric dynamometer test procedures are specified to minimize the test-to-test variations inherent in track testing and to conform to standard industry practice for exhaust emissions and fuel economy measurements. This document does not include test procedures for recharge-dependent (RD) operating modes or vehicles (see 3.1.2 for the definition). This document does not address the methods or equations necessary to calculate the adjusted U.S. Environmental Protection Agency (EPA) label miles per gallon (MPG) (sometimes referred to 'EPA 5-Cycle' calculations).


SAE J 1766-2014 (SAE J1766-2014)

Recommended Practice for Electric, Fuel Cell and Hybrid Electric Vehicle Crash Integrity Testing

Electric, Fuel Cell and Hybrid vehicles may contain many types of high voltage systems. Adequate barriers between occupants and the high voltage systems are necessary to provide protection from potentially harmful electric current and materials within the high voltage system that can cause injury to occupants of the vehicle during and after a crash. This SAE Recommended Practice is applicable to Electric, Fuel Cell and Hybrid vehicle designs that are comprised of at least one vehicle propulsion voltage bus with a nominal operating voltage greater than 60 and less than 1,500 VDC, or greater than 30 and less than 1,000 VAC. This Recommended Practice addresses post-crash electrical safety, retention of electrical propulsion components and electrolyte spillage.


SAE J 2711-2020

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

This SAE Recommended Practice was established to provide an accurate, uniform, and reproducible procedure for simulating use of MD/HD conventional vehicles (CVs) and hybrid-electric vehicles (HEVs), as well as plug-in hybrid-electric vehicles (PHEVs) and battery electric vehicles (BEVs) on powertrain dynamometers for the purpose of measuring emissions and fuel economy. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester. While the main focus of this procedure is for calculating fuel and energy consumption, it is anticipated that emissions may also be recorded during execution of this procedure. It should be noted that most MD/HD powertrains addressed in this document would be powered by engines that are certified separately for emissions. The engine certification procedure appears in the Code of Federal Regulations, Title 40 §86 and §1065.


SAE J 2464-2021

Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing

This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. It describes a body of tests which may be used as needed for abuse testing of electric or hybrid electric vehicle rechargeable energy storage systems (RESS) to determine the response of such electrical energy storage and control systems to conditions or events which are beyond their normal operating range. This document does not establish pass/fail criteria. However, SAE J2929 does define pass/fail criteria for automotive RESS safety testing. Abuse test procedures in this document are intended to cover a broad range of vehicle applications as well as a broad range of electrical energy storage devices, including individual RESS cells (batteries or capacitors), modules, and packs. RESS includes any type of rechargeable electrical energy storage device, such as batteries and capacitors. This document does not apply to RESS that uses mechanical devices to store energy (e.g., electro-mechanical flywheels) or fuel cells.


SAE J 2758-2018

Determination of the Maximum Available Power from a Rechargeable Energy Storage System on a Hybrid Electric Vehicle

This document describes a test procedure for rating peak power of the Rechargeable Energy Storage System (RESS) used in a combustion engine Hybrid Electric Vehicle (HEV). Other types of vehicles with non fossil fuel primary engines, such as fuel cells, are not intended to use this test procedure.


IEC 62576 Ed. 2.0 b:2018

Electric double-layer capacitors for use in hybrid electric vehicles - Test methods for electrical characteristics

IEC 62576:2018 describes the methods for testing electrical characteristics of electric double-layer capacitor cells (hereinafter referred to as capacitor) to be used for peak power assistance in hybrid electric vehicles. This second edition cancels and replaces the first edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) information on applicability of this document has been added in Clause 1; b) the definitions of some terms in Clause 3 have been improved; c) the description of test procedures in Clause 4 has been clarified; d) information on endurance cycling test has been added (Annex E).


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS