Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Cells and Tissue Engineered Constructs for TEMPs

ASTM is one of the leading standards developers for medical devices. With 24 categories, addressing everything from surgical implements to automated analysis, ASTM medical device standards cover a truly wide range. With how much research and training goes into the medical industry, standardization plays a key role in productively actualizing that effort. Organized below for your convenience by usage, industry, and theme are over 300 standards. This list includes standards related to Cells and Tissue Engineered Constructs for TEMPs.


ASTM F3088-14

Standard Test Method for Use of a Centrifugation Method to Quantify/Study Cell-Material Adhesive Interactions

1.1 This test method covers a centrifugation cell adhesion assay that can be used to detect changes in adhesive characteristics of cells with passage or treatments. This approach measures the force required to detach cells from a substrate. Adhesion, among many variables, may vary due to changes in the phenotype of the cells. 1.2 This test method does not cover methods to verify the uniformity of coating of surfaces, nor does it cover methods for characterizing surfaces. 1.3 The cells may include adult, progenitor or stem cells from any species. The types of cells may include chondrocytes, fibroblasts, osteoblast, islet cells, or other relevant adherent cell types. 1.4 This test method does not cover methods for isolating or harvesting of cells. This test method does not cover test methods to quantitate changes in gene expression, or changes in biomarker type or concentration, as identified by immunostaining. Nor does this test method cover quantitative image analysis techniques. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F3106-14

Standard Guide for in vitro Osteoblast Differentiation Assays

1.1 This document provides guidance on how to conduct in vitro osteoblast differentiation assays with progenitor stem cells including mesenchymal stromal cells. 1.2 This document describes the roles of various osteogenic supplements that are added to the cell culture medium of an osteoblast differentiation assay to encourage and support the differentiation of progenitor cells into matrix-producing osteoblasts. 1.3 This document provides recommendations for the concentrations of osteogenic supplements that may prevent the precipitation of artifactual mineral deposits that are not directly produced by osteoblasts, nor correlated with osteoblastic gene expression of the cells. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM F2997-21

Standard Practice for Quantification of Calcium Deposits in Osteogenic Culture of Progenitor Cells Using Fluorescent Image Analysis

1.1 This practice defines a method for the estimation of calcium content at multiple time points in living cell cultures that have been cultured under conditions known to promote mineralization. The practice involves applying a fluorescent calcium-chelating dye that binds to the calcium phosphate mineral crystals present in the live cultures followed by image analysis of fluorescence microscopy images of the stained cell cultures. Quantification of the positively stained areas provides a relative measure of the calcium content in the cell culture plate. A precise correlation between the image analysis parameters and calcium content is beyond the scope of this practice. 1.2 Calcium deposition in a secreted matrix is one of several features that characterize bone formation ( in vitro and in vivo ), and is therefore a parameter that may indicate bone formation and osteoblast function (that is, osteoblastic differentiation). Calcium deposition may, however, be unrelated to osteoblast differentiation status if extensive cell death occurs in the cell cultures or if high amounts of osteogenic medium components that lead to artifactual calcium-based precipitates are used. Distinguishing between calcium deposition associated with osteoblast-produced mineralized matrix and that from pathological or artifactual deposition requires additional structural and chemical characterization of the mineralized matrix and biological characterization of the cell that is beyond the scope of this practice. 1.3 The parameters obtained by image analysis are expressed in relative fluorescence units or area percentage (area%), for example, fraction of coverage of the area analyzed. 1.4 Units - The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2944-20

Standard Practice for Automated Colony Forming Unit (CFU) Assays—Image Acquisition and Analysis Method for Enumerating and Characterizing Cells and Colonies in Culture

1.1 This practice, provided its limitations are understood, describes a procedure for quantitative measurement of the number and biological characteristics of colonies derived from a stem cell or progenitor population using image analysis. 1.2 This practice is applied in an in vitro laboratory setting. 1.3 This practice utilizes: ( a ) standardized protocols for image capture of cells and colonies derived from in vitro processing of a defined population of starting cells in a defined field of view (FOV), and ( b ) standardized protocols for image processing and analysis. 1.4 The relevant FOV may be two-dimensional or three-dimensional, depending on the CFU assay system being interrogated. 1.5 The primary unit to be used in the outcome of analysis is the number of colonies present in the FOV. In addition, the characteristics and sub-classification of individual colonies and cells within the FOV may also be evaluated, based on extant morphological features, distributional properties, or properties elicited using secondary markers (for example, staining or labeling methods). 1.6 Imaging methods require that images of the relevant FOV be captured at sufficient resolution to enable detection and characterization of individual cells and over a FOV that is sufficient to detect, discriminate between, and characterize colonies as complete objects for assessment. 1.7 Image processing procedures applicable to two- and three-dimensional data sets are used to identify cells or colonies as discreet objects within the FOV. Imaging methods may be optimized for multiple cell types and cell features using analytical tools for segmentation and clustering to define groups of cells related to each other by proximity or morphology in a manner that is indicative of a shared lineage relationship (that is, clonal expansion of a single founding stem cell or progenitor). 1.8 The characteristics of individual colony objects (cells per colony, cell density, cell size, cell distribution, cell heterogeneity, cell genotype or phenotype, and the pattern, distribution and intensity of expression of secondary markers) are informative of differences in underlying biological properties of the clonal progeny. 1.9 Under appropriately controlled experimental conditions, differences between colonies can be informative of the biological properties and underlying heterogeneity of colony founding cells (CFUs) within a starting population. 1.10 Cell and colony area/volume, number, and so forth may be expressed as a function of cell culture area (square millimeters), or initial cell suspension volume (milliliters). 1.11 Sequential imaging of the FOV using two or more optical methods may be valuable in accumulating quantitative information regarding individual cells or colony objects in the sample. In addition, repeated imaging of the same sample will be necessary in the setting of process tracking and validation. Therefore, this practice requires a means of reproducible identification of the location of cells and colonies (centroids) within the FOV area/volume using a defined coordinate system. 1.12 To achieve a sufficiently large field-of-view (FOV), images of sufficient resolution may be captured as multiple image fields/tiles at high magnification and then combined together to form a mosaic representing the entire cell culture area. 1.13 Cells and tissues commonly used in tissue engineering, regenerative medicine, and cellular therapy are routinely assayed and analyzed to define the number, prevalence, biological features, and biological potential of the original stem cell and progenitor population(s). 1.13.1 Common applicable cell types and cell sources include, but are not limited to: mammalian stem and progenitor cells; adult-derived cells (for example, blood, bone marrow, skin, fat, muscle, mucosa) cells, fetal-derived cells (for example, cord blood, placental/cord, amniotic fluid); embryonic stem cells (ESC) (that is, derived from inner cell mass of blastocysts); induced pluripotent cells (iPC) (for example, reprogrammed adult cells); culture expanded cells; and terminally differentiated cells of a specific type of tissue. 1.13.2 Common applicable examples of mature differentiated phenotypes which are relevant to detection of differentiation within and among clonal colonies include: hematopoietic phenotypes (erythrocytes, lymphocytes, neutrophiles, eosinophiles, basophiles, monocytes, macrophages, and so forth), adult tissue-specific progenitor cell phenotypes (oteoblasts, chondrocytes, adipocytes, and so forth), and other tissues (hepatocytes, neurons, endothelial cells, keratinocyte, pancreatic islets, and so forth). 1.14 The number of stem cells and progenitor cells in various tissues can be assayed in vitro by liberating the cells from the tissues using methods that preserve the viability and biological potential of the underlying stem cell and/or progenitor population, and placing the tissue-derived cells in an in vitro environment that results in efficient activation and proliferation of stem and progenitor cells as clonal colonies. The true number of stem cells and progenitors (true colony forming units (tCFU)) can thereby be estimated on the basis of the number of colony-forming units observed (observed colony forming units (oCFU)) to have formed ( 1- 3 ) 2 ( Fig. A1.1 ). The prevalence of stem cells and/or progenitors can be estimated on the basis of the number of observed colony-forming units (oCFU) detected, divided by the number of total cells assayed. 1.15 The automated image acquisition and analysis approach (described herein) to cell and colony enumeration has been validated and found to provide superior accuracy and precision when compared to the current gold standard of manual observer defined visual cell and colony counting under a brightfield or fluorescent microscope with or without a hemocytometer ( 4 ) , reducing both intra- and inter-observer variation. Several groups have attempted to automate this and/or similar processes in the past ( 5 , 6 ) . Recent reports further demonstrate the capability of extracting qualitative and quantitative data for colonies of various cell types at the cellular and even nuclear level ( 4 , 7 ) . 1.16 Advances in software and hardware now broadly enable systematic automated analytical approaches. This evolving technology creates the need for general agreement on units of measurement, nomenclature, process definitions, and analytical interpretation as presented in this practice. 1.17 Standardized methods for automated CFU analysis open opportunities to enhance the value and utility of CFU assays in several scientific and commercial domains: 1.17.1 Standardized methods for automated CFU analysis open opportunities to advance the specificity of CFU analysis methods though optimization of generalizable protocols and quantitative metrics for specific cell types and CFU assay systems which can be applied uniformly between disparate laboratories. 1.17.2 Standardized methods for automated CFU analysis open opportunities to reduce the cost of colony analysis in all aspects of biological sciences by increasing throughput and reducing work flow demands. 1.17.3 Standardized methods for automated CFU analysis open opportunities to improve the sensitivity and specificity of experimental systems seeking to detect the effects of in vitro conditions, biological stimuli, biomaterials and in vitro processing steps on the attachment, migration, proliferation, differentiation, and survival of stem cells and progenitors. 1.18 Limitations are described as follows: 1.18.1 Colony Identification Cell Source/Colony Type/Marker Variability Stem cells and progenitors from various tissue sources and in different in vitro environments will manifest different biological features. Therefore, the specific means to detect cells or nuclei and secondary markers utilized and the implementation of their respective staining protocols will differ depending on the CFU assay system, cell type(s) and markers being interrogated. Optimized protocols for image capture and image analysis to detect cells and colonies, to define colony objects and to characterize colony objects will vary depending on the cell source being utilized and CFU system being used. These protocols will require independent optimization, characterization and validation in each application. However, once defined, these can be generalized between labs and across clinical and research domains. 1.18.2 Instrumentation-Induced Variability in Image Capture Choice of image acquisition components described above may adversely affect segmentation of cells and subsequent colony identification if not properly addressed. For example, use of a mercury bulb rather than a fiber-optic fluorescent light source or the general misalignment of optics could produce uneven illumination or vignetting of tiled images comprising the primary large FOV image. This may be corrected by applying background subtraction routines to each tile in a large FOV image prior to tile stitching. 1.18.3 CFU Assay System Associated Variation in Imaging Artifacts In addition to the presentation of colony objects with unique features that must be utilized to define colony identification, each image from each CFU system may present non-cell and non-colony artifacts (for example, cell debris, lint, glass aberrations, reflections, autofluorescence, and so forth) that may confound the detection of cells and colonies if not identified and managed. 1.18.4 Image Capture Methods and Quality Control Variation Variation in image quality will significantly affect the precision and reproducibility of image analysis methods. Variation in focus, illumination, tile registration, exposure time, quenching, and emission spectral bleeding, are all important potential limitations or threats to image quality and reproducibility. 1.19 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.20 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.21 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2315-18

Standard Guide for Immobilization or Encapsulation of Living Cells or Tissue in Alginate Gels

1.1 This guide discusses information relevant to the immobilization or encapsulation of living cells or tissue in alginate gels. Immobilized or encapsulated cells are suitable for use in biomedical and pharmaceutical applications, or both, including, but not limited to, Tissue Engineered Medical Products (TEMPs). 1.2 This guide addresses key parameters relevant for successful immobilization and encapsulation in alginate gels. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2664-19e1

Standard Guide for Assessing the Attachment of Cells to Biomaterial Surfaces by Physical Methods

1.1 This guide describes protocols that can be used to measure the strength of the adhesive bond that develops between a cell and a surface as well as the force required to detach cells that have adhered to a substrate. Controlling the interactions of mammalian cells with surfaces is fundamental to the development of safe and effective medical products. This guide does not cover methods for characterizing surfaces. The information generated by these methods can be used to obtain quantitative measures of the susceptibility of surfaces to cell attachment as well as measures of the adhesion of cells to a surface. This guide also highlights the importance of cell culture history and influences of cell type. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2739-19

Standard Guide for Quantifying Cell Viability and Related Attributes within Biomaterial Scaffolds

1.1 This guide is a resource of cell viability test methods that can be used to assess the number and distribution of viable and non-viable cells within porous and non-porous, hard or soft biomaterial scaffolds, such as those used in tissue-engineered medical products (TEMPs). 1.2 In addition to providing a compendium of available techniques, this guide describes materials-specific interactions with the cell assays that can interfere with accurate cell viability analysis, and includes guidance on how to avoid or account for, or both, scaffold material/cell viability assay interactions. 1.3 These methods can be used for 3-D scaffolds containing cells that have been cultured in vitro or for scaffold/cell constructs that are retrieved after implantation in living organisms. 1.4 This guide does not propose acceptance criteria based on the application of cell viability test methods. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM F2149-16

Standard Test Method for Automated Analyses of Cells—the Electrical Sensing Zone Method of Enumerating and Sizing Single Cell Suspensions

1.1 This test method, provided the limitations are understood, covers a procedure for both the enumeration and measurement of size distribution of most all cell types. The instrumentation allows for user-selectable cell size settings and is applicable to a wide range of cell types. The method works best for spherical cells, and may be less accurate if cells are not spherical, such as for discoid cells or budding yeast. The method is appropriate for suspension as well as adherent cell cultures ( 1 ) . 2 Results may be reported as number of cells per milliliter or total number of cells per volume of cell suspension analyzed. Size distribution may be expressed in cell diameter or volume. 1.2 Cells commonly used in tissue-engineered medical products ( 2 ) are analyzed routinely. Examples are chondrocytes ( 3 ) , fibroblasts ( 4 ) , and keratinocytes ( 5 ) . Szabo et al. used the method for both pancreatic islet number and volume measurements ( 6 ) . In addition, instrumentation using the electrical sensing zone technology was used for both count and size distribution analyses of porcine hepatocytes placed into hollow fiber cartridge extracorporeal liver assist systems. In this study ( 7 ) , and others ( 6 , 8 ) , the automated electrical sensing zone method was validated for precision when compared to the conventional visual cell counting under a microscope using a hemocytometer. Currently, it is not possible to validate cell counting devices for accuracy, since there not a way to produce a reference sample that has a known number of cells. The electrical sensing zone method shall be validated each time it is implemented in a new laboratory, it is used on a new cell type, or the cell counting procedure is modified. 1.3 Electrical sensing zone instrumentation (commonly referred to as a Coulter counter) is manufactured by a variety of companies and is based upon electrical impedance. This test method, for cell counting and sizing, is based on the detection and measurement of changes in electrical resistance produced by a cell, suspended in a conductive liquid, traversing through a small aperture (see Fig. 1 ( 9 ) ). When cells are suspended in a conductive liquid, phosphate-buffered saline for instance, they function as discrete insulators. When the cell suspension is drawn through a small cylindrical aperture, the passage of each cell changes the impedance of the electrical path between two submerged electrodes located on each side of the aperture. An electrical pulse, suitable for both counting and sizing, results from the passage of each cell through the aperture. The path through the aperture, in which the cell is detected, is known as the electronic sensing zone. This test method permits the selective counting of cells within narrow size distribution ranges by electronic selection of the generated pulses. While the number of pulses indicates cell count, the amplitude of the electrical pulse produced depends on the cell's volume. The baseline resistance between the electrodes is due to the resistance of the conductive liquid within the boundaries of the aperture. The presence of cells within the electronic sensing zone raises the resistance of the conductive pathway that depends on the volume of the cell. Analyses of the behavior of cells within the aperture demonstrates that the height of the pulse produced by the cell is the parameter that most nearly shows proportionality to the cell volume.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS