Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Lubricant

Lubricant particle testing standards are published by ASTM. They include standard test methods, guides, practices, and classification for automatic particle counting and particle shape classification using imaging integrated testers, estimation of deleterious particles, low molecular weight PTFE and FEP micronized powders, multielement determination using inductively coupled plasma atomic emission spectrometry, pentane insolubles by membrane filtration, monitoring of soot using fourier transform infrared spectrometry, analytical ferrography, in-service lubricants, and four-part integrated testers (atomic emission spectroscopy, infrared spectroscopy, viscosity, and laser particle counters).


ASTM D7596-14

Standard Test Method for Automatic Particle Counting and Particle Shape Classification of Oils Using a Direct Imaging Integrated Tester

1.1 This test method covers the determination of particle concentration, particle size distribution, particle shape, and soot content for new and in-service oils used for lubrication and hydraulic systems by a direct imaging integrated tester. 1.1.1 The test method is applicable to petroleum and synthetic based fluids. Samples from 2 to 150 mm 2 /s at 40 C may be processed directly. Samples of greater viscosity may be processed after solvent dilution. 1.1.2 Particles measured are in the range from 4 m to 70 m with the upper limit dependent upon passing through a 100 m mesh inlet screen. 1.1.3 Particle concentration measured may be as high as 5 000 000 particles per mL without significant coincidence error. 1.1.4 Particle shape is determined for particles greater than approximately 20 m in length. Particles are categorized into the following categories: sliding, cutting, fatigue, nonmetallic, fibers, water droplets, and air bubbles. 1.1.5 Soot is determined up to approximately 1.5 % by weight. 1.1.6 This test method uses objects of known linear dimension for calibration. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


ASTM D1404/D1404M-99(2019)

Standard Test Method for Estimation of Deleterious Particles in Lubricating Grease

1.1 This test method covers a procedure for the detection and estimation of deleterious particles in lubricating grease. 1.2 This test method is applicable to all lubricating greases. It can also be used to test other semi-solid or viscous materials. Grease fillers, such as graphite and molybdenum disulfide, can be tested for abrasive contaminants by first mixing them into petrolatum or grease known to be free of deleterious particles. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Within the text, the SI units are shown in brackets. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D5675-13(2018)

Standard Classification for Low Molecular Weight PTFE and FEP Micronized Powders

1.1 This classification system provides a method of adequately identifying low molecular weight polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) micronized powders using a system consistent with that of Classification System D4000 . It further provides a means for specifying these materials by the use of a simple line callout designation. This classification covers fluoropolymer micronized powders that are used as lubricants and as additives to other materials in order to improve lubricity or to control other characteristics of the base material. 1.2 These powders are sometimes known as lubricant powders. The powders usually have a much smaller particle size than those used for molding or extrusion, and they generally are not processed alone. The test methods and properties included are those required to identify and specify the various types of fluoropolymer micronized powders. Recycled fluoropolymer materials meeting the detailed requirements of this classification are included (see Guide D7209 ). 1.3 These fluoropolymer micronized powders and the materials designated as filler powders (F) in ISO 12086-1 and ISO 12086-2 are equivalent. 2 1.4 The values stated in SI units as detailed in IEEE/ASTM SI-10 are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.1.2 . 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D5185-18

Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)

1.1 This test method covers the determination of additive elements, wear metals, and contaminants in used and unused lubricating oils and base oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1 . (A) These wavelengths are only suggested and do not represent all possible choices. 1.2 This test method covers the determination of selected elements, listed in Table 1 , in re-refined and virgin base oils. 1.3 For analysis of any element using wavelengths below 190 nm, a vacuum or inert-gas optical path is required. The determination of sodium and potassium is not possible on some instruments having a limited spectral range. 1.4 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers. 2 1.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision. 1.6 For elements other than calcium, sulfur, and zinc, the low limits listed in Table 2 and Table 3 were estimated to be ten times the repeatability standard deviation. For calcium, sulfur, and zinc, the low limits represent the lowest concentrations tested in the interlaboratory study. (A) where: X = mean concentration, g/g. (A) where: X = mean concentration, g/g. 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 6.1 , 8.2 , and 8.4 . 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D4055-04(2019)

Standard Test Method for Pentane Insolubles by Membrane Filtration

1.1 This test method covers the determination of pentane insolubles for particles exceeding 0.8 m in new and used lubricating oils. Note 1: Pentane insolubles with particle sizes less than 0.8 m may be studied with appropriate size membrane filters. Particle sizes above or below 0.8 m can be studied. The precision of this test method has been determined only at 0.8 m. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.1 , 8.2.1 , and Annex A1 . 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D7844-21

Standard Test Method for Condition Monitoring of Soot in In-Service Lubricants by Trend Analysis using Fourier Transform Infrared (FT-IR) Spectrometry

1.1 This test method pertains to field-based monitoring soot in diesel crankcase engine oils as well as in other types of engine oils where soot may contaminate the lubricant as a result of a blow-by due to incomplete combustion of in-service fuels. 1.2 This test method uses FT-IR spectroscopy for monitoring of soot build-up in in-service lubricants as a result of normal machinery operation. Soot levels in engine oils rise as soot particles contaminate the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of soot in in-service lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of soot in the oil. 1.3 Acquisition of FT-IR spectral data for measuring soot in in-service oil and lubricant samples is described in Standard Practice D7418 . In this test method, measurement and data interpretation parameters for soot using both direct trend analysis and differential (spectral subtraction) trend analysis are presented. 1.4 This test method is based on trending of spectral changes associated with soot in in-service lubricants. For direct trend analysis, values are recorded directly from absorbance spectra and reported in units of 100*absorbance per 0.1 mm pathlength. For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimeter). Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured ( 1 ) . 2 In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of soot levels to equipment performance. 1.4.1 Interpretation of soot values reported as a percentage is more widely understood within the industry. As an alternate reporting option, an equation to convert the soot absorbance value generated from Procedure A (direct trend) analysis to percent is provided. This equation is based on the Beer-Lambert law which states that concentration is directly proportional to absorbance. Note 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group. 1.5 This test method is primarily for petroleum/hydrocarbon based lubricants but is also applicable for ester based oils, including polyol esters or phosphate esters. 1.6 This method is intended as a field test only, and should be treated as such. Critical applications should use laboratory based methods, such as Thermal Gravimetric (TGA) analysis described in Standard Method D5967 , Annex A4. 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D7690-11(2021)

Standard Practice for Microscopic Characterization of Particles from In-Service Lubricants by Analytical Ferrography

1.1 This practice covers the identification by optical microscopy of wear and contaminant particles commonly found in used lubricant and hydraulic oil samples that have been deposited on ferrograms. This practice relates to the identification of particles, but not to methods of determining particle concentration. 1.2 This practice interfaces with but generally excludes particles generated in the absence of lubrication, such as may be generated by erosion, impaction, gouging, or polishing. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D7684-11(2020)

Standard Guide for Microscopic Characterization of Particles from In-Service Lubricants

1.1 This guide covers the classification and reporting of results from in-service lubricant particulate debris analysis obtained by microscopic inspection of wear and contaminant particles extracted from in-service lubricant and hydraulic oil samples. This guide suggests standardized terminology to promote consistent reporting, provides logical framework to document likely or possible root causes, and supports inference associated machinery health condition or severity based on available debris analysis information. 1.2 This guide shall be used in conjunction with an appropriate wear debris analysis sample preparation and inspection technique including, but not limited to, one of the following: 1.2.1 Ferrography using linear glass slides, 1.2.2 Ferrography using rotary glass slides, 1.2.3 Patch analysis using patch makers (filtration through membrane filters), 1.2.4 Filter debris analysis, 1.2.5 Magnetic plug inspection, or 1.2.6 Other means used to extract and inspect particulate debris from in-service lubricants. 1.3 This standard is not intended to evaluate or characterize the advantage or disadvantage of one or another of these particular particle extraction and inspection methods. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM D7417-17

Standard Test Method for Analysis of In-Service Lubricants Using Particular Four-Part Integrated Tester (Atomic Emission Spectroscopy, Infrared Spectroscopy, Viscosity, and Laser Particle Counter)

1.1 This test method covers the quantitative analysis of in-service lubricants using an automatic testing device that integrates these varied technologies: atomic emission spectroscopy, infrared spectroscopy, viscosity, and particle counting. 1.2 This is suited for in-service lubricating oils having viscosities in the range between ISO 10 and ISO 320 and properties in the ranges given in Tables 1 and 2 . TABLE 1 Element Test Parameters Measured, Calculated, and Reported TABLE 2 Physical Properties Parameters Measured, Calculated, and Reported Note 1: Review Test Method D4739 and D2896 for particular lubricating oil applications. 1.3 This test method may be used to establish trends in wear and contamination of in-service lubricants and may not give equivalent numerical results to current ASTM test methods. 1.4 This test method is not intended for use with crude oil. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Specific hazard statements are given in Section 9 and 11.3 .) 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS